Cobalt oxide and composite thin films were synthesized by spin-coating technique, followed by heating to 500°C in oxidizing, inert, or reducing atmospheres. Methanolic solutions of triethanolamine complexes of cobalt acetates and nitrates were spin-coated at 1000, 2000, and 3000 rpm. The influence of heating parameters and film thickness on the phase content of the films were investigated, using grazing incidence X-ray diffraction, X-ray reflectivity, and scanning electron microscopy. By tuning the synthesis parameters, Co3O4, CoO and Co films were obtained, as well as CoO–Co and Co3O4–CoO composite films of varying phase ratios.
Published in | Advances in Materials (Volume 3, Issue 5) |
DOI | 10.11648/j.am.20140305.14 |
Page(s) | 52-57 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2014. Published by Science Publishing Group |
Cobalt Oxides, Coo–Co Composites, Solution Synthesis, Thin Films, Tailor Composition
[1] | N.N Greenwood, and A. Earnshaw (1984) Chemistry of the Elements, Butterworth-Heinemann Ldt, Oxford, UK, ISBN 0-7506-2832-4, pp 1290–1327 |
[2] | E. Wilczkowska, K. Krawczyk, J. Petryk, J. Sobczak, Z. Kaszkur, (2010) Appl. Catal. A-Gen. 389 (1–2); 165–172 |
[3] | H. Hamada, M. Haneda, N. Kakuta, H. Miura, K. Inami, T. Nanba, W.Q. Hua, A. Ueno, H. Ohfune, Y. Udagawa, (1997) Chem. Lett.; 887–888 |
[4] | P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, (2000) Nature 407; 496–499 |
[5] | C. Wang, D. Wang, Q. Wang, L. Wang, (2010) Electrochimica Acta, 55; 6420–6425 |
[6] | Y. Wang, Z.W. Fu, Q.Z. Qin, (2003) Thin Solid Films 441(1–2); 19–24 |
[7] | F. Huang, H. Zhan, Y.H. Zhou, (2003) Chinese J. Chem. 21(10); 1275–1279 |
[8] | J. Wollenstein, M. Burgmair, G. Plescher, T. Sulima, J. Hildenbrand, H. Bottner, I. Eisele, (2003) Sensor. Actuat. B-Chem. 93(1–3); 442–448 |
[9] | D. Barreca, E. Comini, A. Gasparotto, C. Maccato, A. Pozza, C. Sada, G. Sberveglieri, E. Tondello, (2010) J. Nanosci. Nanotechno. 10(12); 8054–8061 |
[10] | H.S. Shim, V.R. Shinde, H.J. Kim, Y.E. Sung, W.B. Kim, (2008) Thin Solid Films 516(23); 8573–8578 |
[11] | H. Yamamoto, T. Naito, M. Terao, T. Shintani, (2002) Thin Solid Films 411(2); 289–297 |
[12] | F. Svegl, B. Orel, M.G. Hutchins, K. Kalcher, (1996) J. Electrochem. Soc. 134(5);1532–1539 |
[13] | A. Berger, M.J. Pechan, R. Compton, J.S. Jiang, J.E. Pearson, S.D. Bader, (2001) Physica B 306; 235–239. |
[14] | M. Rubinstein, P. Lubitz, S.F. Cheng, (1999) J. Magn. Magn. Mater. 195; 299–306 |
[15] | C.N.R. Rao, V.V. Agrawal, K. Biswas, U.K. Gautam, M. Ghosh, A. Govindaraj, G.U. Kulkarni, K.P. Kalyanikutty, K. Sardar, S.R.C. Vivekchand, (2006) Pure Appl. Chem. 78(9); 1619–1650 |
[16] | L. Armelao, D. Barreca, S. Gross, A. Martucci, M. Tieto, E. Tondello, (2001) J. Non-Cryst. Solids 293–295; 477-482 |
[17] | K. Sinko, G. Szabo, M. Zrinyi, (2011) J. Nanosci. Nanotechno. 11(5); 4127–4135 |
[18] | Q. Guo, X. Guo, Q. Tian, (2010) Adv. Powder Technol. 21; 529–533 |
[19] | D. Gallant, M. Pézolet, S.J. Simard (2006) Phys. Chem. B. 110; 6871–6880 |
[20] | Y.W.D. Chen. R.N. Noufi, (1984) J. Electrochem. Soc. 131; 731–735 |
[21] | K.M. Nam, J.H. Shim, D.W. Han, H.S. Kwon, Y.M. Kang, Y. Li, H. Song, W.S. Seo, J.T. Park, (2010) Chem. Mater. 22; 4446–4454 |
[22] | J. Ahmed, T. Ahmad, K.V. Ramanujachary, S.E. Lofland, A.K. Ganguli, (2008) J. Colloid Interf. Sci. 321(2); 434–441 |
[23] | G. Sun, X. Zhang, M. Cao, B. Wei, C. Hu, (2009) J. Phys. Chem. C 113; 6948–6954 |
[24] | H.J. Nam, T. Sasaki, N. Koshizaki (2006) J. Phys. Chem. B 110; 23081–23084 |
[25] | Y. Ren, P.G. Bruce, Z. Ma, (2011) J. Mater. Chem. 21; 9312–9318 |
[26] | H.K. Lin, H.C. Chiu, H.C. Tsai, S.H. Chien, C.B. Wang, (2003) Catal. Lett. 88(3–4); 169–174 |
[27] | G. Westin, A. Pohl, M. Ottosson, K. Jansson, (2007) Thin Solid Films 515; 7751–7757 |
[28] | R. Knut, J.M. Wikberg, K. Lashgari, V.A. Coleman, G. Westin, P. Svedlindh, O. Karis, (2010) Phys. Rev. B 82; 094438 |
[29] | G. Westin, K. Jansson, A. Pohl, M. Leideborg, (2004) J. Sol-Gel Sci. Techn. 31; 25–29 |
[30] | G. Westin, M. Leideborg, K. Lashgari, V.A. Coleman, K. Jansson, A. Pohl, (2009) Int. J. Nanotechnol. 6; 828–849 |
[31] | A. Pohl, G. Westin, (2005) J. Am. Ceram. Soc. 88(8); 2099–2105 |
[32] | G. Westin, M. Ottosson, A. Pohl, (2008) Thin Solid Films 516; 4673–4678 |
[33] | Å. Ekstrand, K. Jansson, G. Westin, (2005) Chem. Mater. 17; 199–205 |
[34] | Å. Ekstrand, K. Jansson, G. Westin, (2000) Sol-Gel Sci. Techn. 19; 353–356 |
[35] | U. Lagerqvist, P. Svedlindh, K. Gunnarsson, J. Lu, L. Hultman, M. Ottosson, A. Pohl, unpublished. |
APA Style
Ulrika Lagerqvist, Mikael Ottosson, Annika Pohl. (2014). Synthesis and Characterization of Cobalt Oxide and Composite Thin Films. Advances in Materials, 3(5), 52-57. https://doi.org/10.11648/j.am.20140305.14
ACS Style
Ulrika Lagerqvist; Mikael Ottosson; Annika Pohl. Synthesis and Characterization of Cobalt Oxide and Composite Thin Films. Adv. Mater. 2014, 3(5), 52-57. doi: 10.11648/j.am.20140305.14
AMA Style
Ulrika Lagerqvist, Mikael Ottosson, Annika Pohl. Synthesis and Characterization of Cobalt Oxide and Composite Thin Films. Adv Mater. 2014;3(5):52-57. doi: 10.11648/j.am.20140305.14
@article{10.11648/j.am.20140305.14, author = {Ulrika Lagerqvist and Mikael Ottosson and Annika Pohl}, title = {Synthesis and Characterization of Cobalt Oxide and Composite Thin Films}, journal = {Advances in Materials}, volume = {3}, number = {5}, pages = {52-57}, doi = {10.11648/j.am.20140305.14}, url = {https://doi.org/10.11648/j.am.20140305.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.am.20140305.14}, abstract = {Cobalt oxide and composite thin films were synthesized by spin-coating technique, followed by heating to 500°C in oxidizing, inert, or reducing atmospheres. Methanolic solutions of triethanolamine complexes of cobalt acetates and nitrates were spin-coated at 1000, 2000, and 3000 rpm. The influence of heating parameters and film thickness on the phase content of the films were investigated, using grazing incidence X-ray diffraction, X-ray reflectivity, and scanning electron microscopy. By tuning the synthesis parameters, Co3O4, CoO and Co films were obtained, as well as CoO–Co and Co3O4–CoO composite films of varying phase ratios.}, year = {2014} }
TY - JOUR T1 - Synthesis and Characterization of Cobalt Oxide and Composite Thin Films AU - Ulrika Lagerqvist AU - Mikael Ottosson AU - Annika Pohl Y1 - 2014/11/10 PY - 2014 N1 - https://doi.org/10.11648/j.am.20140305.14 DO - 10.11648/j.am.20140305.14 T2 - Advances in Materials JF - Advances in Materials JO - Advances in Materials SP - 52 EP - 57 PB - Science Publishing Group SN - 2327-252X UR - https://doi.org/10.11648/j.am.20140305.14 AB - Cobalt oxide and composite thin films were synthesized by spin-coating technique, followed by heating to 500°C in oxidizing, inert, or reducing atmospheres. Methanolic solutions of triethanolamine complexes of cobalt acetates and nitrates were spin-coated at 1000, 2000, and 3000 rpm. The influence of heating parameters and film thickness on the phase content of the films were investigated, using grazing incidence X-ray diffraction, X-ray reflectivity, and scanning electron microscopy. By tuning the synthesis parameters, Co3O4, CoO and Co films were obtained, as well as CoO–Co and Co3O4–CoO composite films of varying phase ratios. VL - 3 IS - 5 ER -