| Peer-Reviewed

Visualization of Minkowski Patch

Received: 25 November 2014     Accepted: 28 November 2014     Published: 8 December 2014
Views:       Downloads:
Abstract

This study is an introduction to visualize Minkowskian (n, 1) geometry for all n ³1. The Minkowski geometry naturally encodes the ideas of inertial frames, time and space dilation. Moreover, it also includes studying Minkowski patch which is the natural structure of Minkowski space.

Published in Pure and Applied Mathematics Journal (Volume 3, Issue 6)
DOI 10.11648/j.pamj.20140306.14
Page(s) 132-136
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2014. Published by Science Publishing Group

Keywords

Minkowski Space, Einstein Space, Minkowski Patch, Improper Point, Crooked Surface

References
[1] Izumiya, S. and Saji, K., The mandala of Legendrian dualities for pseudo-spheres in Lorentz-Minkowski space and "flat" spacelike surface, Journal of Singularities,Vol.2, (2010), 92—127.
[2] L´opez, R., Differential Geometry of Curves and Surfaces in Lorentz-Minkowski space, Mini-Course taught at the Instituto de Matem´atica e Estat´ıstica (IME-USP) University of Sao Paulo, Brasil, October 18, 2008.
[3] Izumiya, S. and Yıldırım, H., Slant Geometry of Spacelike Hypersurfaces in the Lightcone, Journal of the Mathematical Society of Japan, Vol. 63, Number 3 (2011), 715—752. lp
[4] Goldman, W. M., Crooked Surfaces and Anti-De Sitter Geometry, arXiv:1302.4911[math.DG] from Cornell University Library, February 20, 2013.
[5] Barbot, T., Charette, V., Drumm, T., Goldman, W. M., and Melnick, K., A primer on the (2 + 1) Einstein universe, Recent Developments in Pseudo-Riemannian Geometry journal, European Mathematical Society, (2008), 179—230.
[6] Drumm, T. and Goldman, W. M., The geometry of crooked planes, Journal of Topology Vol. 38 (1999), No. 2, 323—351.
[7] Burelle, J. P., Charette, V., Drumm, T. and Goldman, W. M., Crooked Halfspaces, arXiv:1211.4177 [math.DG] from Cornell University Library, October 3, 2012.
Cite This Article
  • APA Style

    Rania Bahgat Mohamed Amer. (2014). Visualization of Minkowski Patch. Pure and Applied Mathematics Journal, 3(6), 132-136. https://doi.org/10.11648/j.pamj.20140306.14

    Copy | Download

    ACS Style

    Rania Bahgat Mohamed Amer. Visualization of Minkowski Patch. Pure Appl. Math. J. 2014, 3(6), 132-136. doi: 10.11648/j.pamj.20140306.14

    Copy | Download

    AMA Style

    Rania Bahgat Mohamed Amer. Visualization of Minkowski Patch. Pure Appl Math J. 2014;3(6):132-136. doi: 10.11648/j.pamj.20140306.14

    Copy | Download

  • @article{10.11648/j.pamj.20140306.14,
      author = {Rania Bahgat Mohamed Amer},
      title = {Visualization of Minkowski Patch},
      journal = {Pure and Applied Mathematics Journal},
      volume = {3},
      number = {6},
      pages = {132-136},
      doi = {10.11648/j.pamj.20140306.14},
      url = {https://doi.org/10.11648/j.pamj.20140306.14},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.pamj.20140306.14},
      abstract = {This study is an introduction to visualize Minkowskian (n, 1) geometry for all n ³1. The Minkowski geometry naturally encodes the ideas of inertial frames, time and space dilation. Moreover, it also includes studying Minkowski patch which is the natural structure of Minkowski space.},
     year = {2014}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Visualization of Minkowski Patch
    AU  - Rania Bahgat Mohamed Amer
    Y1  - 2014/12/08
    PY  - 2014
    N1  - https://doi.org/10.11648/j.pamj.20140306.14
    DO  - 10.11648/j.pamj.20140306.14
    T2  - Pure and Applied Mathematics Journal
    JF  - Pure and Applied Mathematics Journal
    JO  - Pure and Applied Mathematics Journal
    SP  - 132
    EP  - 136
    PB  - Science Publishing Group
    SN  - 2326-9812
    UR  - https://doi.org/10.11648/j.pamj.20140306.14
    AB  - This study is an introduction to visualize Minkowskian (n, 1) geometry for all n ³1. The Minkowski geometry naturally encodes the ideas of inertial frames, time and space dilation. Moreover, it also includes studying Minkowski patch which is the natural structure of Minkowski space.
    VL  - 3
    IS  - 6
    ER  - 

    Copy | Download

Author Information
  • Department of Physics and Mathematics Engineering, Faculty of Engineering/ P.O. 44519/ Zagazig University, Egypt

  • Sections