This study is an introduction to visualize Minkowskian (n, 1) geometry for all n ³1. The Minkowski geometry naturally encodes the ideas of inertial frames, time and space dilation. Moreover, it also includes studying Minkowski patch which is the natural structure of Minkowski space.
Published in | Pure and Applied Mathematics Journal (Volume 3, Issue 6) |
DOI | 10.11648/j.pamj.20140306.14 |
Page(s) | 132-136 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2014. Published by Science Publishing Group |
Minkowski Space, Einstein Space, Minkowski Patch, Improper Point, Crooked Surface
[1] | Izumiya, S. and Saji, K., The mandala of Legendrian dualities for pseudo-spheres in Lorentz-Minkowski space and "flat" spacelike surface, Journal of Singularities,Vol.2, (2010), 92—127. |
[2] | L´opez, R., Differential Geometry of Curves and Surfaces in Lorentz-Minkowski space, Mini-Course taught at the Instituto de Matem´atica e Estat´ıstica (IME-USP) University of Sao Paulo, Brasil, October 18, 2008. |
[3] | Izumiya, S. and Yıldırım, H., Slant Geometry of Spacelike Hypersurfaces in the Lightcone, Journal of the Mathematical Society of Japan, Vol. 63, Number 3 (2011), 715—752. lp |
[4] | Goldman, W. M., Crooked Surfaces and Anti-De Sitter Geometry, arXiv:1302.4911[math.DG] from Cornell University Library, February 20, 2013. |
[5] | Barbot, T., Charette, V., Drumm, T., Goldman, W. M., and Melnick, K., A primer on the (2 + 1) Einstein universe, Recent Developments in Pseudo-Riemannian Geometry journal, European Mathematical Society, (2008), 179—230. |
[6] | Drumm, T. and Goldman, W. M., The geometry of crooked planes, Journal of Topology Vol. 38 (1999), No. 2, 323—351. |
[7] | Burelle, J. P., Charette, V., Drumm, T. and Goldman, W. M., Crooked Halfspaces, arXiv:1211.4177 [math.DG] from Cornell University Library, October 3, 2012. |
APA Style
Rania Bahgat Mohamed Amer. (2014). Visualization of Minkowski Patch. Pure and Applied Mathematics Journal, 3(6), 132-136. https://doi.org/10.11648/j.pamj.20140306.14
ACS Style
Rania Bahgat Mohamed Amer. Visualization of Minkowski Patch. Pure Appl. Math. J. 2014, 3(6), 132-136. doi: 10.11648/j.pamj.20140306.14
AMA Style
Rania Bahgat Mohamed Amer. Visualization of Minkowski Patch. Pure Appl Math J. 2014;3(6):132-136. doi: 10.11648/j.pamj.20140306.14
@article{10.11648/j.pamj.20140306.14, author = {Rania Bahgat Mohamed Amer}, title = {Visualization of Minkowski Patch}, journal = {Pure and Applied Mathematics Journal}, volume = {3}, number = {6}, pages = {132-136}, doi = {10.11648/j.pamj.20140306.14}, url = {https://doi.org/10.11648/j.pamj.20140306.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.pamj.20140306.14}, abstract = {This study is an introduction to visualize Minkowskian (n, 1) geometry for all n ³1. The Minkowski geometry naturally encodes the ideas of inertial frames, time and space dilation. Moreover, it also includes studying Minkowski patch which is the natural structure of Minkowski space.}, year = {2014} }
TY - JOUR T1 - Visualization of Minkowski Patch AU - Rania Bahgat Mohamed Amer Y1 - 2014/12/08 PY - 2014 N1 - https://doi.org/10.11648/j.pamj.20140306.14 DO - 10.11648/j.pamj.20140306.14 T2 - Pure and Applied Mathematics Journal JF - Pure and Applied Mathematics Journal JO - Pure and Applied Mathematics Journal SP - 132 EP - 136 PB - Science Publishing Group SN - 2326-9812 UR - https://doi.org/10.11648/j.pamj.20140306.14 AB - This study is an introduction to visualize Minkowskian (n, 1) geometry for all n ³1. The Minkowski geometry naturally encodes the ideas of inertial frames, time and space dilation. Moreover, it also includes studying Minkowski patch which is the natural structure of Minkowski space. VL - 3 IS - 6 ER -