Values of a plasticity characteristic H for different materials were determined by the indentation method at cryogenic temperatures. Using the linear dependence H(T) at low temperatures, the value of δH at 0 K, designated by δH(0), was obtained by the extrapolation method. Values of δH(0) for different materials, namely FCC, HCP and BCC metals, intermetallics, metallic glasses, quasicrystals, ceramics and covalent crystals, are discussed. An analytic expression for a dependence of δH(0) on the parameters of thermoactivated movement of dislocations, melting point and Young’s modulus E is obtained. It is shown that any type of hardening of a crystal and an increase in the Peierls–Nabarro stress σS(0) reduce δH(0). Only a rise in E leads to the simultaneous increase in σS(0) and δH(0). δH(0) can be considered as a dislocation plasticity in the absence of thermal vibrations of atoms and should be considered together with strength parameters as an important fundamental characteristic of dislocation properties.
Published in | International Journal of Materials Science and Applications (Volume 3, Issue 6) |
DOI | 10.11648/j.ijmsa.20140306.22 |
Page(s) | 353-362 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2014. Published by Science Publishing Group |
Hardness, Plasticity, Indentation, Dislocations, Plastic Deformation
[1] | M. P. Markovets, Definition of the Mechanical Properties of Metals by Hardness. Moscow: Mashinostroenie, 1979, 191 p., in Russian. |
[2] | H. M. Pollock, Nanoindentation, Friction, Lubrication, and Wear, Metals Handbook, vol. 18, P. J.Blau, Eds. ASM International, 1992, pp. 419-429. |
[3] | Yu. V. Milman, B. A. Galanov, and S. I. Chugunova, “Plasticity characteristic obtained through hardness measurement” (overview 107), Acta metall mater, vol. 41, no.9, pp. 2523-2532, 1993. |
[4] | B. A. Galanov, Yu. V. Milman, S.I. Chugunova, and I. V. Goncharova, “Investigation of mechanical properties of high-hardness materials by indentation”, Superhard Mater, no.3, pp. 25-38, 1999. |
[5] | Yu. V. Milman, S. I. Chugunova, and I. V. Goncharova. “Plasticity chracteristic obtained by indentation technique for crystalline and noncrystalline materials in the wide temperature range”, High Temp Mater Process, vol. 25, no. 1-2, pp. 39-46, 2006. |
[6] | A. Byakova, Yu. Milman, and A. Vlasov, “High performance ceramic coatings for cutting tool – Perspectives in improvement of coating mechanical properties”, in: Proc. 8th CIRP Int. Workshop on Modeling of Machining Operations, Chemnitz, Germany, R. Neugebauer, Ed. Chemnitz: Fraunhofer Inst. Werkzeugmaschinen und Umformtechnik, 2005, pp. 559-568. |
[7] | Yu. Milman, “Plasticity characteristic obtained by indentation”, J Phys D: Appl Phys, vol. 41, 074013, 9 p., 2008. |
[8] | B. Bozzini, M. Boniardi, A. Fanigliulo, and F. Bogani, “Tribological properties of electroless Ni-P/diamond composite films”, Mater Res Bull, vol. 36, iss.11, pp. 1889-1902, 2001. |
[9] | P. H. Boldt, G. C. Weatherly, and J. D. Embury, “A tranmission electron microscope study of hardness indentations in MoSi2”, J Mater Res, vol. 15, no.4, pp. 1025-1031, 2000. |
[10] | J. B. Qiang, W. Zhang, G. Xie, H. Kimura, C. Dong, and A. Inoue, “An in situ bulk Zr58Al9Ni9Cu14Nb10 quasicrystal-glass composite with superior room temperature mechanical properties”, Intermetallics, vol. 15, pp. 1197-1201, 2007. |
[11] | F. Meng, B. Wang, F. Ge, and F. Huang, “Microstructure and mechanical properties of Ni-alloyed SiC coatings”, Surface&Coatings Tech, vol. 213, pp. 77-83, 2012. |
[12] | P. Mogilevsky, “Indentification of slip systems in CaWO4 scheelite”, Phil Mag, vol. 85, no.30, pp. 3511-3539, 2005. |
[13] | Y. Estrin, N. V. Isaev, S. V. Lubenets, S. V. Malykhin, A. T. Pugachov, V. V. Pustovalov, E. N. Reshetnyak, V. S. Fomenko, L. S. Fomenko, S. E. Shumilin, M. Janecek, and R. J. Hellmig, “Effect of microstructure on plastic deformation of Cu at low homologous temperatures”, Acta Mater, vol. 54, pp. 5581-5590, 2006. |
[14] | G. Sharma, R. V. Ramanujan, T. R. G. Kutty, and N. Prabhu, “Indentation creep studies of iron aluminide intermetallic alloy” Intermetallics, vol. 13, pp. 47-53, 2005. |
[15] | M. Gogebakan, B. Avar, and M. Tarakci, ”Microstructures and mechanical properties of conventionally solidified Al63Cu25Fe12 alloys”, J Alloys and Compounds, vol. 509S, pp. S316-S319, 2011. |
[16] | N. K. Mukhopadhyay, G. C. Weatherly, and J. D. Embury, “An analysis of microhardness of single-quasicrystals in the Al-Cu-Co-Si system”, Mater Sci Eng A, vol. 315, pp. 202-210, 2001. |
[17] | en.wikipedia.org/wiki/Plasticity_(physics). |
[18] | A. L. Roytburd, Plasticity of crystals, Physical Encyclopedic Dictionary. Moscow: Soviet Encyclopaedia, 1983, p. 548, in Russian. |
[19] | A. Kelly. Strong Solids. Oxford: Clarendon Press, 1973, 261 p. |
[20] | J. J. Gilman, “Electronic basis of hardness and phase transformations (covalent crystals)”, J Phys. D: Appl Phys, vol. 41, 074020, 5 p., 2008. |
[21] | Yu. V. Milman, S. Luyckx, V. A. Goncharuk, and Y. T. Northrop, “Results from bending tests on submicron and micron WC-Co grades at elevated temperatures”, Int. J Ref Met Hard Mater, vol. 20, pp. 71-79, 2002. |
[22] | Yu. Milman, S. Dub, and A. Golubenko, “Plasticity characteristic obtained through instrumental indentation”, Mater Res Soc Symp Proc, vol. 1049, pp. 123-128, 2008. |
[23] | I. V. Gridneva, Yu. V. Milman, and V. I. Trefilov, “On the Mechanical Properties of Crystals with Covalent Bond”, Phys stat sol, vol. 36, no. 59, pp. 59-67, 1969. |
[24] | V. I. Trefilov, V. A. Borisenko, G. G. Gnesin, I. V. Gridneva, Yu. V. Milman, and S. I. Chugunova, “On the phase transition under pressure in silicon carbide”, Sov Phys Dokl, vol. 23, pp. 207-208, 1978. |
[25] | Yu. V. Milman and E. S. Koba, “On the dislocation mechanism of plastic flow in metallic glasses”, Sci Sintering, vol. 31, pp. 65-82, 1999. |
[26] | Yu. V. Milman, O. E. Sklyarov, V. I. Trefilov, and A. A. Udovenko, “Device PMTN for microhardness measurements at low temperatures under a layer of a cooling liquid”, Trudy Metrologicheskikh Institutov SSSR, vol. 91, pp. 167-169, 1967, in Russian. |
[27] | I. N. Frantsevich, F. F. Voronov, and S. A. Bakuta, Elastic Constants and Modulus of Metals and Non-Metals. Kiev: Naukova Dumka, 1982, 286 p., in Russian. |
[28] | R. A. Andrievsky, A. G. Lanin, and G. A. Rymashevsky, Strength of Refractory Compounds. Moscow: Metallurgija, 1974, 232 p., in Russian. |
[29] | V. V. Pustovalov and S. E. Shumilin, “Plastic deformation and super-conducting properties of aluminium alloys at temperatures 0.5-4.2K”, The Physics of Metals and Metallographs (USSR), vol.62, pp. 171-179, 1986. |
[30] | R. P. Reed, “Aluminium 2. A review of deformation properties of high purity aluminium and dilute aluminium alloys”, Cryogenics, vol. 12, iss. 4, pp. 259-291, 1972. |
[31] | Z. Huang, L. Y. Gu, and J. R. Weertman, “Temperature dependence of hardness of nanocrystalleve copper in low-temperature range”, Scrip Mater, vol. 37, iss. 7, pp. 1071-1075, 1997. |
[32] | V. I. Trefilov, Yu. V. Milman, and S. A. Firstov. Physical Basis of Strength of Refractory Metals. Kiev: Naukova Dumka, 1975, 315 p., in Russian. |
[33] | Yu. V. Milman and V. I. Trefilov, “Physical nature of the temperature dependence of yield stress”, Powder Metall Met Ceram, vol. 49, no. 7-8, pp. 374-385, 2010. |
[34] | D. Tabor. The Hardness of Metals. Oxford Clarendon Press, 1951, 130 p. |
[35] | K. J. Johnson. Contact Mechanics. Cambridge: Cambridge University Press, 1985, 510 p. |
[36] | Yu. V. Milman, “Structure and mechanical properties of materials in the temperature ranges of cold, warm and hot deformation”, Mater Sci Forum, vol. 426-432, pp. 4399-4404, 2003. |
[37] | V. I. Trefilov, Yu. V. Milman, and I. V. Gridneva, “Characteristic temperature of deformation of crystalline materials”, Crys Res and Technol, vol. 19, no. 3, pp. 413-421, 1984. |
[38] | P. H. Thornton, R. G. Davies, and T. L. Johnston, “The temperature dependence of the flow stress of the γ′ phase based upon Ni3Al”, Metall Trans, vol. 1, iss.1, pp. 207-218, 1970. |
[39] | Yu. V. Milman, “Deformation mechanisms, microstructure and mechanical properties of nanoscale crystalline and noncrystalline materials in different temperature ranges”, Mater Res Soc Symp Proc, vol. 1297, pp. 77-82, 2011. |
[40] | I. V. Gridneva, Yu. V. Milman, and V. I. Trefilov, “Phase transition in diamond structure crystals at hardness measurement”, Phys Status Solidi (a), vol. 14, pp. 177-182, 1972. |
[41] | Yu. V. Milman, S. I. Chugunova, I. V. Goncharova, T. Chudoba, W. Lojkowski, and W. Gooch, “Temperature dependence of hardness in silicon-carbide ceramics with different porosity”, Int J Refractory Met Hard Mater, vol. 17, pp. 361-368, 1999. |
[42] | Yu. V. Milman, D. V. Lotsko, A. N. Belous, and S. N. Dub, “Quasicrystalline materials. Structure and mechanical properties”, in: Functional Gradient Materials and Surface Layers Prepared by Fine Particles Technology, M.-I. Baraton and I. Uvarova, Eds. Kluwer Acad. Publ., Kiev, 2001, pp. 289-296. |
[43] | Yu. V. Milman, D. V. Lotsko, S. N. Dub, A. I. Ustinov, S. S. Polishchuk, and S. V. Ulshin, “Mechanical properties of quasicrystalline Al-Cu-Fe coatings with submicron-sized grains”, Surface & Coatings Techn, vol. 201, pp. 5937-5943, 2007. |
[44] | H. V. Swygenhoven and J. R. Weertman, “Deformation in nanocrystalline metals”, Mater Today, vol. 9, iss.5, pp. 24-31, 2006. |
[45] | T. Suzuki and T. Ohmura, “Ultra-microundentation of silicon at elevated temperatures”, Phil Mag A, vol. 74, no.5, pp. 1073-1084, 1996. |
[46] | S. J. Lloyd, A. Castellero, F. Giuliani, Y. Long, K. K. McLaughlin, J. M. Molina-Aldareguia, N. A. Stelmashenko, L. J. Vandeperre, and W. J. Clegg, “Observations of nanoindents via cross-sectional transmission electron microscopy: a survey of deformation mechanisms”, Proc R Soc A, vol. 461, pp. 2521-2543, 2005. |
[47] | V. Domnich, Yu. Gogotsi, and S. Dub, “Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon”, Appl Phys Lett, vol. 76, no.16, pp. 2214-2216, 2000. |
[48] | M. M. Chaudri, M. M. O. Khayyat, D. G. Hasko, “Investigations of the indentation-induced crystallographic phase changes in silicon using Raman spectroscopy”, Surface Review and Letters, vol. 14, no.4, pp.719-723, 2007. |
[49] | V. Domnich, Y. Aratyn, W. M. Kriven, Yu. Gogotsi, “Temperature dependence of silicon hardness: Experimental evidence of phase transformations”, Rev Adv Mater Sci, vol. 17, no.1-2, pp. 33-41, 2008. |
[50] | Yu. V. Milman, D. B. Miracle, S. I. Chugunova, I. V. Voskoboinik, N. P. Korzhova, T. N. Legkaya, and Yu. N. Podrezov, “Mechanical behaviour of Al3Ti intermetallic and L12 phases on its basis”, Intermetallics, vol.9, pp. 839-845, 2001. |
APA Style
Yuly Milman, Svitlana Chugunova, Irina Goncharova. (2014). Plasticity at Absolute Zero as a Fundamental Characteristic of Dislocation Properties. International Journal of Materials Science and Applications, 3(6), 353-362. https://doi.org/10.11648/j.ijmsa.20140306.22
ACS Style
Yuly Milman; Svitlana Chugunova; Irina Goncharova. Plasticity at Absolute Zero as a Fundamental Characteristic of Dislocation Properties. Int. J. Mater. Sci. Appl. 2014, 3(6), 353-362. doi: 10.11648/j.ijmsa.20140306.22
AMA Style
Yuly Milman, Svitlana Chugunova, Irina Goncharova. Plasticity at Absolute Zero as a Fundamental Characteristic of Dislocation Properties. Int J Mater Sci Appl. 2014;3(6):353-362. doi: 10.11648/j.ijmsa.20140306.22
@article{10.11648/j.ijmsa.20140306.22, author = {Yuly Milman and Svitlana Chugunova and Irina Goncharova}, title = {Plasticity at Absolute Zero as a Fundamental Characteristic of Dislocation Properties}, journal = {International Journal of Materials Science and Applications}, volume = {3}, number = {6}, pages = {353-362}, doi = {10.11648/j.ijmsa.20140306.22}, url = {https://doi.org/10.11648/j.ijmsa.20140306.22}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmsa.20140306.22}, abstract = {Values of a plasticity characteristic H for different materials were determined by the indentation method at cryogenic temperatures. Using the linear dependence H(T) at low temperatures, the value of δH at 0 K, designated by δH(0), was obtained by the extrapolation method. Values of δH(0) for different materials, namely FCC, HCP and BCC metals, intermetallics, metallic glasses, quasicrystals, ceramics and covalent crystals, are discussed. An analytic expression for a dependence of δH(0) on the parameters of thermoactivated movement of dislocations, melting point and Young’s modulus E is obtained. It is shown that any type of hardening of a crystal and an increase in the Peierls–Nabarro stress σS(0) reduce δH(0). Only a rise in E leads to the simultaneous increase in σS(0) and δH(0). δH(0) can be considered as a dislocation plasticity in the absence of thermal vibrations of atoms and should be considered together with strength parameters as an important fundamental characteristic of dislocation properties.}, year = {2014} }
TY - JOUR T1 - Plasticity at Absolute Zero as a Fundamental Characteristic of Dislocation Properties AU - Yuly Milman AU - Svitlana Chugunova AU - Irina Goncharova Y1 - 2014/11/20 PY - 2014 N1 - https://doi.org/10.11648/j.ijmsa.20140306.22 DO - 10.11648/j.ijmsa.20140306.22 T2 - International Journal of Materials Science and Applications JF - International Journal of Materials Science and Applications JO - International Journal of Materials Science and Applications SP - 353 EP - 362 PB - Science Publishing Group SN - 2327-2643 UR - https://doi.org/10.11648/j.ijmsa.20140306.22 AB - Values of a plasticity characteristic H for different materials were determined by the indentation method at cryogenic temperatures. Using the linear dependence H(T) at low temperatures, the value of δH at 0 K, designated by δH(0), was obtained by the extrapolation method. Values of δH(0) for different materials, namely FCC, HCP and BCC metals, intermetallics, metallic glasses, quasicrystals, ceramics and covalent crystals, are discussed. An analytic expression for a dependence of δH(0) on the parameters of thermoactivated movement of dislocations, melting point and Young’s modulus E is obtained. It is shown that any type of hardening of a crystal and an increase in the Peierls–Nabarro stress σS(0) reduce δH(0). Only a rise in E leads to the simultaneous increase in σS(0) and δH(0). δH(0) can be considered as a dislocation plasticity in the absence of thermal vibrations of atoms and should be considered together with strength parameters as an important fundamental characteristic of dislocation properties. VL - 3 IS - 6 ER -