Nanomaterials including graphene and its derivatives have attained immense popularity among scientific community due to their unique properties. Graphene (G), graphene oxide (GO), reduced graphene oxide (rGO) and their nano-composites have shown to possess enormous potential in the field of nanomedicines. Graphene family nanomaterials (GFNs) have extensively being used in different fields including antibacterial formulations. Mechanisms underlying the toxicity of GFNs involve the interaction of sharp edges of graphene derivatives with the bacterial cell wall, charge transfer and formation of huge number of reactive oxygen species. The use of graphene derivatives including GO-Ag nanocomposites, polydopamine-graphene nanosheets, rGO-Iron oxide NPs, Pluronic-GO, G-Carbon Nanotubes-iron oxides, Ag-rGO-Fe3O4-polyethylenimine composites, ZnO-GO and Cystamine-GO has revealed a strong antibacterial action against a variety of bacteria. In this paper, an attempt has been made to comprise the latest approaches being put forward in various researches based on the antibacterial action of graphene based nanomaterials and their composites
Published in |
American Journal of Life Sciences (Volume 5, Issue 3-1)
This article belongs to the Special Issue Environmental Toxicology |
DOI | 10.11648/j.ajls.s.2017050301.11 |
Page(s) | 1-9 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2016. Published by Science Publishing Group |
Graphene Family Materials, Nanomedicines, Graphene Oxide, Silver Nanoparticles, Graphene Quantum Dots, Antibacterial Action
[1] | Cheong, O. J.; Lee, J. S.; Kim, J. H.; Jang, J. High Performance Flexible Actuator of Urchin-Like ZnO Nanostructure/Polyvinylenefluoride Hybrid Thin Film With Graphene Electrodes for Acoustic Generator and Analyzer. Small 2016. doi: 10.1002/smll.201503869. |
[2] | Goh, K.; Heising, J. K.; Yuan, Y.; Karahan, H. E.; Wei, L.; Zhai, S.; Koh, J. X.; Htin, N. M.; Zhang, F.; Wang, R.; Fane, A. G.; Dekker, M.; Dehghani, F.; Chen, Y. Sandwich-Architectured Poly(Lactic Acid)-Graphene Composite Food Packaging Films. ACS Appl. Mater. Interfaces. 2016. doi: 10.1021/acsami.6b02498. |
[3] | Cagang, A. A.; Abidi, I. H.; Tyagi, A.; Hu, J.; Xu, F.; Lu, T. J.; Luo, Z. Graphene-Based Field Effect Transistor in Two-Dimensional Paper Networks. Anal. Chim. Acta 2016, 917, 101-106. |
[4] | oon, C. Y.; Li, Q.; Zhang, J.; Li, Z.; Dong, C.; Lee, A. W.; Chan, W. H.; Li, H. W. FRET-Based Modified Graphene Quantum Dots for Direct Trypsin Quantification in Urine. Anal. Chim. Acta 2016, 917, 64-70. |
[5] | Raccichini, R.; Varzi, A.; Chakravadhanula, V. S.; Kubel, C.; Passerini, S. Boosting the Power Performance of Multilayer Graphene As Lithium-Ion Battery Anode Via Unconventional Doping With in-Situ Formed Fe Nanoparticles. Sci. Rep. 2016, 6, 23585. |
[6] | Song, H. S.; Kwon, O. S.; Kim, J. H.; Conde, J.; Artzi, N. 3D Hydrogel Scaffold Doped With 2D Graphene Materials for Biosensors and Bioelectronics. Biosens. Bioelectron. 2016. doi: 10.1016/j.bios.2016.03.045. |
[7] | Wang, X.; Ou, G.; Wang, N.; Wu, H. Graphene-Based Recyclable Photo-Absorbers for High-Efficiency Seawater Desalination. ACS Appl. Mater. Interfaces. 2016. 13, 8(14):9194-9. |
[8] | Neto, A. C.; Peres, N. M. R. Drawing conclusions from graphene. Phys. World. 2006, 19(11), 33–37. |
[9] | Shannon, M. N.; Russell, J. C.; Elena, P. I. Bacterial Interaction with Graphene Particles and Surfaces. Chapter 5, In Advanvces in Graphene Science; Mahmood, A., Eds.; Intech Publisher: Croatia, 2013; pp- 99-118. |
[10] | Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–91. |
[11] | Huang, Y.; Dong, X.; Liu, Y.; Li, L. J.; Chen, P. Graphene-based biosensors for detection of bacteria and their metabolic activities. Mater. Chem. 2011, 21, 12358. |
[12] | Natalia, K.; Ewa, S.; Sławomir, J.; Marta, K.; Barbara, S.; Mateusz, W.; Jacek, S.; Anna, H.; Ludwika, L.; Rafał, K.; Joanna, J.; André, C. Interaction of graphene family materials with Listeria monocytogenes and Salmonella enterica. Nanoscale Res. Lett. 2015, 10, 23. DOI: 10.1186/s11671-015-0749-y. |
[13] | Sanchez, V. C.; Jackhak, A.; Hurt, R. H.; Kane, A. B. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem. Res. Toxicol. 2011, 25(1), 15–34. |
[14] | Cao, N.; Zhang, Y. Study of Reduced Graphene Oxide Preparation by Hummers’ Method and Related Characterization. Journal of Nanomaterials. 2015, 168125. |
[15] | Abbasi, E.; Akbarzadeh, A.; Kouhi, M.; Milani, M. Graphene: Synthesis, Bio-Applications, and Properties. Artif. Cells Nanomed. Biotechnol. 2016, 44, 150-156. |
[16] | Lin, L.; Liu, Z. Graphene Synthesis: On-the-Spot Growth. Nat. Mater. 2016, 15, 9-10. |
[17] | Babenko, V.; Murdock, A. T.; Koos, A. A.; Britton, J.; Crossley, A.; Holdway, P.; Moffat, J.; Huang, J.; Alexander-Webber, J. A.; Nicholas, R. J.; Grobert, N. Rapid Epitaxy-Free Graphene Synthesis on Silicidated Polycrystalline Platinum. Nat. Commun. 2015, 6, 7536. |
[18] | Hartley, C. S. Graphene Synthesis: Nanoribbons From the Bottom-Up. Nat. Chem. 2014, 6, 91-92. |
[19] | Kawai, S.; Eren, B.; Marot, L.; Meyer, E. Graphene Synthesis Via Thermal Polymerization of Aromatic Quinone Molecules. ACS Nano. 2014, 8, 5932-5938. |
[20] | Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat Mater. 2007, 6, 183–191. |
[21] | Li, D.; Müller, M. B.; Gilje, S. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol. 2008, 3, 101–105. |
[22] | Stankovich, S.; Dikin, D. A.; Dommett, G. H. Graphene-based composite materials. Nature. 2006, 442, 282–286. |
[23] | Kuila, T.; Bose, S.; Khanra, P.; Mishra, A. K.; Kim, N. H.; Lee, J. H. Recent advances in graphene-based biosensors. Biosensors and Bioelectronics. 2011, 26(12), 4637–4648. |
[24] | Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology. 2008, 3(5), 270–274. |
[25] | Choi, B. G.; Yang, M.; Hong, W. H.; Choi J. W.; Huh, Y. S. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano. 2012, 6(5), 4020–4028. |
[26] | Singh, Z. Applications and toxicity of graphene family nanomaterials and their composites. Nanotechnol. Sci. Appl. 2016, 9, 15-28. |
[27] | Jaworski, S.; Sawosz, E.; Grodzik, M. In vitro evaluation of the effects of graphene platelets on glioblastoma multiforme cells. Int. J Nanomedicine. 2013, 8, 413–420. |
[28] | Gullberg, E.; Cao, S.; Berg, O. G.; Ilbäck, C.; Sandegren, L.; Hughes, D. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 2011, 7, e1002158. |
[29] | Bush, K.; Courvalin, P.; Dantas, G.; Davies, J.; Eisenstein, B.; Huovinen, P. Tackling antibiotic resistance. Nat. Rev. Microbiol. 2011, 9, 894–6. |
[30] | Carlet, J.; Jarlier, V.; Harbarth, S.; Voss, A.; Goossens, H.; Pittet, D. Ready for a world without antibiotics? The Pensières Antibiotic Resistance Call to Action. Antimicrob. Resist Infect Control. 2012, 1, 11. |
[31] | Sun, W.; Qi, X.; Zhang, Y.; Yang, H.; Gao, H.; Chen, Y. Electrochemical DNA biosensor for the detection of Listeria monocytogenes with dendritic nanogold and electrochemical reduced graphene modified carbon ionic liquid electrode. Electrochim. Acta. 2012, 85, 145–51. |
[32] | Krishnamoorthy, K. Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. Phys Chem C. 2012, 116, 17280–7. |
[33] | Brunet, L.; Lyon, D. Y.; Hotze, E. M.; Alvarez, P. J. J.; Wiesner, M. R. Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles. Environ. Sci. Technol. 2009, 43, 4355–60. |
[34] | Sawosz, E.; Chwalibog, A.; Mitura, K.; Mitura, S.; Szeliga, J.; Niemiec, T. Visualisation of morphological interaction of diamond and silver nanoparticles with Salmonella Enteritidis and Listeria monocytogenes. Nanosci Nanotechnol. 2011, 11, 7635–41. |
[35] | Jastrzębska, A. M.; Kurtycz, P.; Olszyna, A. R. Recent advances in graphene family materials toxicity investigations. Nanopart Res. 2012, 14, 1320. |
[36] | Zhao, J.; Deng, B.; Lv, M.; Li, J.; Zhang, Y.; Jiang, H.; Peng, C.; Li, J.; Shi, J.; Huang, Q.; Fan, C. Graphene Oxide-Based Antibacterial Cotton Fabrics. Adv. Healthc. Mater. 2013, 2, 1259-1266. |
[37] | Hu, W.; Peng, C.; Luo, W.; Lv, M.; Li, X.; Li, D.; Huang, Q.; Fan, C. Graphene-Based Antibacterial Paper. ACS Nano. 2010, 4, 4317-4323. |
[38] | Shahnawaz, K. M.; Abdelhamid, H. N.; Wu, H. F. Near Infrared (NIR) Laser Mediated Surface Activation of Graphene Oxide Nanoflakes for Efficient Antibacterial, Antifungal and Wound Healing Treatment. Colloids Surf. B Biointerfaces. 2015, 127, 281-291. |
[39] | He, J.; Zhu, X.; Qi, Z.; Wang, C.; Mao, X.; Zhu, C.; He, Z.; Li, M.; Tang, Z. Killing Dental Pathogens Using Antibacterial Graphene Oxide. ACS Appl. Mater. Interfaces. 2015, 7, 5605-5611. |
[40] | Mangadlao, J. D.; Santos, C. M.; Felipe, M. J.; de Leon, A. C.; Rodrigues, D. F.; Advincula, R. C. On the Antibacterial Mechanism of Graphene Oxide (GO) Langmuir-Blodgett Films. Chem. Commun. (Camb. ) 2015, 51, 2886-2889. |
[41] | Gurunathan, S.; Han, J. W.; Dayem, A. A.; Eppakayala, V.; Kim, J. H. Oxidative Stress-Mediated Antibacterial Activity of Graphene Oxide and Reduced Graphene Oxide in Pseudomonas Aeruginosa. Int. J Nanomedicine. 2012, 7, 5901-5914. |
[42] | Liu, S.; Hu, M.; Zeng, T. H.; Wu, R.; Jiang, R.; Wei, J.; Wang, L.; Kong, J.; Chen, Y. Lateral Dimension-Dependent Antibacterial Activity of Graphene Oxide Sheets. Langmuir 2012, 28, 12364-12372. |
[43] | Hui, L.; Piao, J. G.; Auletta, J.; Hu, K.; Zhu, Y.; Meyer, T.; Liu, H.; Yang, L. Availability of the Basal Planes of Graphene Oxide Determines Whether It Is Antibacterial. ACS Appl. Mater. Interfaces. 2014, 6, 13183-13190. |
[44] | Karahan, H. E.; Wei, L.; Goh, K.; Wiraja, C.; Liu, Z.; Xu, C.; Jiang, R.; Wei, J.; Chen, Y. Synergism of Water Shock and a Biocompatible Block Copolymer Potentiates the Antibacterial Activity of Graphene Oxide. Small 2015, 12(7), 951-962. |
[45] | Nanda, S. S.; An, S. S.; Yi, D. K. Oxidative Stress and Antibacterial Properties of a Graphene Oxide-Cystamine Nanohybrid. Int. J Nanomedicine. 2015, 10, 549-556. |
[46] | Eda G, Chhowalla M. Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater 2010, 22(22), 2392–415. |
[47] | Liu, S.; Zeng, T. H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. ACS Nano. 2011, 5, 6971-6980. |
[48] | Cai, X.; Tan, S.; Yu, A.; Zhang, J.; Liu, J.; Mai, W.; Jiang, Z. Sodium 1-Naphthalenesulfonate-Functionalized Reduced Graphene Oxide Stabilizes Silver Nanoparticles With Lower Cytotoxicity and Long-Term Antibacterial Activity. Chem. Asian J 2012, 7, 1664-1670. |
[49] | Shao, W.; Liu, X.; Min, H.; Dong, G.; Feng, Q.; Zuo, S. Preparation, Characterization, and Antibacterial Activity of Silver Nanoparticle-Decorated Graphene Oxide Nanocomposite. ACS Appl. Mater. Interfaces. 2015, 7, 6966-6973. |
[50] | Tang, J.; Chen, Q.; Xu, L.; Zhang, S.; Feng, L.; Cheng, L.; Xu, H.; Liu, Z.; Peng, R. Graphene Oxide-Silver Nanocomposite As a Highly Effective Antibacterial Agent With Species-Specific Mechanisms. ACS Appl. Mater. Interfaces. 2013, 5, 3867-3874. |
[51] | Zhu, Z.; Su, M.; Ma, L.; Ma, L.; Liu, D.; Wang, Z. Preparation of Graphene Oxide-Silver Nanoparticle Nanohybrids With Highly Antibacterial Capability. Talanta 2013, 117, 449-455. |
[52] | Zhang, P.; Wang, H.; Zhang, X.; Xu, W.; Li, Y.; Li, Q.; Wei, G.; Su, Z. Graphene Film Doped With Silver Nanoparticles: Self-Assembly Formation, Structural Characterizations, Antibacterial Ability, and Biocompatibility. Biomater. Sci. 2015, 3, 852-860. |
[53] | Das, M. R.; Sarma, R. K.; Borah, S. C.; Kumari, R.; Saikia, R.; Deshmukh, A. B.; Shelke, M. V.; Sengupta, P.; Szunerits, S.; Boukherroub, R. The Synthesis of Citrate-Modified Silver Nanoparticles in an Aqueous Suspension of Graphene Oxide Nanosheets and Their Antibacterial Activity. Colloids Surf. B Biointerfaces. 2013, 105, 128-136. |
[54] | de Faria, A. F.; Martinez, D. S.; Meira, S. M.; de Moraes, A. C.; Brandelli, A.; Filho, A. G.; Alves, O. L. Anti-Adhesion and Antibacterial Activity of Silver Nanoparticles Supported on Graphene Oxide Sheets. Colloids Surf. B Biointerfaces. 2014, 113, 115-124. |
[55] | Ocsoy, I.; Paret, M. L.; Ocsoy, M. A.; Kunwar, S.; Chen, T.; You, M.; Tan, W. Nanotechnology in Plant Disease Management: DNA-Directed Silver Nanoparticles on Graphene Oxide As an Antibacterial Against Xanthomonas Perforans. ACS Nano. 2013, 7, 8972-8980. |
[56] | Zhang, Z.; Zhang, J.; Zhang, B.; Tang, J. Mussel-Inspired Functionalization of Graphene for Synthesizing Ag-Polydopamine-Graphene Nanosheets As Antibacterial Materials. Nanoscale. 2013, 5, 118-123. |
[57] | Tian, T.; Shi, X.; Cheng, L.; Luo, Y.; Dong, Z.; Gong, H.; Xu, L.; Zhong, Z.; Peng, R.; Liu, Z. Graphene-Based Nanocomposite As an Effective, Multifunctional, and Recyclable Antibacterial Agent. ACS Appl. Mater. Interfaces. 2014, 6, 8542-8548. |
[58] | Yu, L.; Zhang, Y.; Zhang, B.; Liu, J. Enhanced Antibacterial Activity of Silver Nanoparticles/Halloysite Nanotubes/Graphene Nanocomposites With Sandwich-Like Structure. Sci. Rep. 2014, 4, 4551. |
[59] | Wang, H.; Liu, J.; Wu, X.; Tong, Z.; Deng, Z. Tailor-Made Au@Ag Core-Shell Nanoparticle 2D Arrays on Protein-Coated Graphene Oxide With Assembly Enhanced Antibacterial Activity. Nanotechnology 2013, 24, 205102. |
[60] | Pan, W. Y.; Huang, C. C.; Lin, T. T.; Hu, H. Y.; Lin, W. C.; Li, M. J.; Sung, H. W. Synergistic Antibacterial Effects of Localized Heat and Oxidative Stress Caused by Hydroxyl Radicals Mediated by Graphene/Iron Oxide-Based Nanocomposites. Nanomedicine 2015, 12, 431-438. |
[61] | Sharma, V. K.; McDonald, T. J.; Kim, H.; Garg, V. K. Magnetic Graphene-Carbon Nanotube Iron Nanocomposites As Adsorbents and Antibacterial Agents for Water Purification. Adv. Colloid Interface Sci. 2015, 225, 229-240. |
[62] | Wang, N.; Hu, B.; Chen, M. L.; Wang, J. H. Polyethylenimine Mediated Silver Nanoparticle-Decorated Magnetic Graphene As a Promising Photothermal Antibacterial Agent. Nanotechnology. 2015, 26, 195703. |
[63] | Ristic, B. Z.; Milenkovic, M. M.; Dakic, I. R.; Todorovic-Markovic, B. M.; Milosavljevic, M. S.; Budimir, M. D.; Paunovic, V. G.; Dramicanin, M. D.; Markovic, Z. M.; Trajkovic, V. S. Photodynamic Antibacterial Effect of Graphene Quantum Dots. Biomaterials 2014, 35, 4428-4435. |
[64] | Hui, L.; Huang, J.; Chen, G.; Zhu, Y.; Yang, L. Antibacterial Property of Graphene Quantum Dots (Both Source Material and Bacterial Shape Matter). ACS Appl. Mater. Interfaces. 2016, 8, 20-25. |
[65] | Wang, Y. W.; Cao, A.; Jiang, Y.; Zhang, X.; Liu, J. H.; Liu, Y.; Wang, H. Superior Antibacterial Activity of Zinc Oxide/Graphene Oxide Composites Originating From High Zinc Concentration Localized Around Bacteria. ACS Appl. Mater. Interfaces. 2014, 6, 2791-2798. |
[66] | Zhong, L.; Yun, K. Graphene Oxide-Modified ZnO Particles: Synthesis, Characterization, and Antibacterial Properties. Int. J Nanomedicine. 2015, 10 Spec Iss, 79-92. |
[67] | Cai, X.; Tan, S.; Lin, M.; Xie, A.; Mai, W.; Zhang, X.; Lin, Z.; Wu, T.; Liu, Y. Synergistic Antibacterial Brilliant Blue/Reduced Graphene Oxide/Quaternary Phosphonium Salt Composite With Excellent Water Solubility and Specific Targeting Capability. Langmuir 2011, 27, 7828-7835. |
[68] | Ouyang, Y.; Cai, X.; Shi, Q.; Liu, L.; Wan, D.; Tan, S.; Ouyang, Y. Poly-L-Lysine-Modified Reduced Graphene Oxide Stabilizes the Copper Nanoparticles With Higher Water-Solubility and Long-Term Additively Antibacterial Activity. Colloids Surf. B Biointerfaces. 2013, 107, 107-114. |
[69] | Hong, B.; Jung, H.; Byun, H. Preparation of Polyvinylidene Fluoride Nanofiber Membrane and Its Antibacterial Characteristics With Nanosilver or Graphene Oxide. J Nanosci. Nanotechnol. 2013, 13, 6269-6274. |
[70] | Li, J.; Wang, G.; Zhu, H.; Zhang, M.; Zheng, X.; Di, Z.; Liu, X.; Wang, X. Antibacterial Activity of Large-Area Monolayer Graphene Film Manipulated by Charge Transfer. Sci. Rep. 2014, 4, 4359. |
APA Style
Zorawar Singh, Rumina Singh. (2016). Toxicity of Graphene Based Nanomaterials Towards Different Bacterial Strains: A Comprehensive Review. American Journal of Life Sciences, 5(3-1), 1-9. https://doi.org/10.11648/j.ajls.s.2017050301.11
ACS Style
Zorawar Singh; Rumina Singh. Toxicity of Graphene Based Nanomaterials Towards Different Bacterial Strains: A Comprehensive Review. Am. J. Life Sci. 2016, 5(3-1), 1-9. doi: 10.11648/j.ajls.s.2017050301.11
@article{10.11648/j.ajls.s.2017050301.11, author = {Zorawar Singh and Rumina Singh}, title = {Toxicity of Graphene Based Nanomaterials Towards Different Bacterial Strains: A Comprehensive Review}, journal = {American Journal of Life Sciences}, volume = {5}, number = {3-1}, pages = {1-9}, doi = {10.11648/j.ajls.s.2017050301.11}, url = {https://doi.org/10.11648/j.ajls.s.2017050301.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajls.s.2017050301.11}, abstract = {Nanomaterials including graphene and its derivatives have attained immense popularity among scientific community due to their unique properties. Graphene (G), graphene oxide (GO), reduced graphene oxide (rGO) and their nano-composites have shown to possess enormous potential in the field of nanomedicines. Graphene family nanomaterials (GFNs) have extensively being used in different fields including antibacterial formulations. Mechanisms underlying the toxicity of GFNs involve the interaction of sharp edges of graphene derivatives with the bacterial cell wall, charge transfer and formation of huge number of reactive oxygen species. The use of graphene derivatives including GO-Ag nanocomposites, polydopamine-graphene nanosheets, rGO-Iron oxide NPs, Pluronic-GO, G-Carbon Nanotubes-iron oxides, Ag-rGO-Fe3O4-polyethylenimine composites, ZnO-GO and Cystamine-GO has revealed a strong antibacterial action against a variety of bacteria. In this paper, an attempt has been made to comprise the latest approaches being put forward in various researches based on the antibacterial action of graphene based nanomaterials and their composites}, year = {2016} }
TY - JOUR T1 - Toxicity of Graphene Based Nanomaterials Towards Different Bacterial Strains: A Comprehensive Review AU - Zorawar Singh AU - Rumina Singh Y1 - 2016/11/22 PY - 2016 N1 - https://doi.org/10.11648/j.ajls.s.2017050301.11 DO - 10.11648/j.ajls.s.2017050301.11 T2 - American Journal of Life Sciences JF - American Journal of Life Sciences JO - American Journal of Life Sciences SP - 1 EP - 9 PB - Science Publishing Group SN - 2328-5737 UR - https://doi.org/10.11648/j.ajls.s.2017050301.11 AB - Nanomaterials including graphene and its derivatives have attained immense popularity among scientific community due to their unique properties. Graphene (G), graphene oxide (GO), reduced graphene oxide (rGO) and their nano-composites have shown to possess enormous potential in the field of nanomedicines. Graphene family nanomaterials (GFNs) have extensively being used in different fields including antibacterial formulations. Mechanisms underlying the toxicity of GFNs involve the interaction of sharp edges of graphene derivatives with the bacterial cell wall, charge transfer and formation of huge number of reactive oxygen species. The use of graphene derivatives including GO-Ag nanocomposites, polydopamine-graphene nanosheets, rGO-Iron oxide NPs, Pluronic-GO, G-Carbon Nanotubes-iron oxides, Ag-rGO-Fe3O4-polyethylenimine composites, ZnO-GO and Cystamine-GO has revealed a strong antibacterial action against a variety of bacteria. In this paper, an attempt has been made to comprise the latest approaches being put forward in various researches based on the antibacterial action of graphene based nanomaterials and their composites VL - 5 IS - 3-1 ER -