Bobolo is a thick fermented, popular traditional food, derived from cassava (Manihot esculenta Crantz) in Cameroon. The physical, sensory, chemical and microbiological characteristics of Bobolo were analyzed, in order to identify the suitable cassava varieties and the local fermentation method with the best nutritional and industrial properties. The range of L* (lightness / darkness), a* (redness / greenness), b* (yellowness / blueness) were 75.00±0.65-80.07±0.60, 3.7±0.57-4.90±0.60, 11.9±08-17.2±0.75 respectively. Sensorial characteristics (color, pasting, and global quality) evaluation reveal that Bobolo made with aerobic fermentation with ferment had the best characteristics and independent of varieties. The campo varieties presented superior characteristics compared to the other varieties. Bobolo of different varieties and the same processed cassava products had an average range of moisture content (40.85±0.91 – 44.36±0.33%), carbohydrates (38.72±0.66 – 40.91±1.12%), protein (1.18±0.04 – 1.44±0.01%), total fat (4.02±0.05 – 4.38±0.14%), crude fiber (1.71±0.05 – 2.77±0.15%), ash (0.28±0.05 – 0.36±0.02%) and cyanure (4.28±0.22 – 6.49±0.12mg/kg) and where they varied significantly between products and variety. The mineral analysis result in the Bobolo samples ranged 0.04±0.00 - 0.07±0.00 mg/100 g Ca, 0.07±0.00 – 0.10±0.00 mg/100 g Mg, 0.74±0.05 – 0.88±0.04 mg/100 g K, 7.82±0.87 – 11.96±1.00 mg/100 g Na, 5.7±0.14 – 8.7±0.14 ug/g Zn and 15.37±0.18- 21.15±0.77 ug/g Mn respectively. The Bobolo produced contained more mesophilic total flora and molds and yeasts and was absent from Eschericha coli, Staphylococcus aureus, Clostridium spp. Bacillus cereus and Salmonella spp. Therefore, the types and varieties of cassava fermentations influence the quality of Bobolo.
Published in | International Journal of Nutrition and Food Sciences (Volume 13, Issue 4) |
DOI | 10.11648/j.ijnfs.20241304.11 |
Page(s) | 126-139 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2024. Published by Science Publishing Group |
Manihot esculenta Crantz, Bobolo, Sensory, Physicochemical, Microbiological
Raw | |||
---|---|---|---|
Color parameter | Campo | Mintol Minko’o | TMS 0326 |
L* | 88.5±0.80a | 87.50±0.40a | 87.9±0.90a |
a* | 4.7±0.20a | 5.00±0.30a | 4.7±0.50a |
b* | 11.5±0.43a | 11.10±0.20a | 13.7±0.50a |
Cook | |||
---|---|---|---|
Color parameter | Campo | Mintol Minko’o | TMS 0326 |
L* | 77.8±0.80a | 80.07±0.60a | 75.00±0.65a |
a* | 4.6±0.30a | 4.90±0.60a | 3.7±0.57a |
b* | 12.5±0.66a | 17.2±0.75a | 11.9±0.80a |
Raw varieties | |||
---|---|---|---|
Parameters | Campo | Mintol Minko’o | TMS 0326 |
Moisture content (%) | 51.33±0.12a | 59.43±0.29b | 58.17±0.11a |
Carbohydrate (%) | 24.4±1.34a | 27.98±0.88b | 22.80±0.21a |
Protein (%) | 1.26±0.15ab | 0.92±0.15a | 1.41±0.03b |
Fat (%) | 4.77±0.22ab | 4.45±0.21a | 5.11±0.13b |
Fiber (%) | 3.05±0.09b | 1.86±0.06a | 4.87±0.07c |
Ash (%) | 0.80±0.06a | 1.24±0.12b | 0.83±0.04a |
Cyanure (mg/kg) | 61.15±0.07a | 69.5±0.70b | 60.38±0.08a |
Baton de manioc (Bobolo) | |||
---|---|---|---|
Parameters | Campo | Mintol Minko’o | TMS 0326 |
Moisture content (%) | 42.55±1.76a | 44.36±0.33a | 40.85±0.91a |
Carbohydrate (%) | 38.72±0.66a | 40.91±1.12a | 40.23±0.21a |
Protein (%) | 1.42±0.04b | 1.18±0.04a | 1.44±0.01b |
Fat (%) | 4.02±0.05a | 4.14±0.06ab | 4.38±0.14b |
Fiber (%) | 2.11±0.15b | 1.71±0,05a | 2.77±0.15c |
Ash (%) | 0.30±0.00a | 0.36±0.02a | 0.28±0.05a |
Cyanure (mg/kg) | 4.28±0.22a | 6.49±0.12c | 5.21±0.16b |
Raw varities | |||
---|---|---|---|
Parameters | Campo | Mintol Minko’o | TMS 0326 |
Ca (mg/100 g) | 0.04±0.00a | 0.07±0.00c | 0.05±0.01b |
Mg (mg/100 g) | 0.07±0.00a | 0.09±0.00b | 0.10±0.01b |
K (mg/100 g) | 0.88±0.04b | 0.75±0.07a | 0.74±0.05a |
Na (mg/100 g) | 7.82±0.87a | 11.96±1.00c | 9.76±0.14b |
Zn (ug/g) | 5.7±0.14a | 8.7±0.14c | 7.75±0.21b |
Mn (ug/g) | 20.85±0.49b | 22.65±0.21c | 17.35±0.16a |
Baton de manioc (Bobolo) | |||
---|---|---|---|
Parameters | Campo | Mintol Minko’o | TMS 0326 |
Ca (mg/100 g) | 42.55±1.76a | 44.36±0.33a | 40.85±0.91a |
Mg (mg/100 g) | 38.72±0.66a | 40.91±1.12a | 40.23±0.21a |
K (mg/100 g) | 1.42±0.04b | 1.18±0.04a | 1.44±0.01b |
Na (mg/100 g) | 4.02±0.05a | 4.14±0.06ab | 4.38±0.14b |
Zn (ug/g) | 2.11±0.15b | 1.71±0,05a | 2.77±0.15c |
Mn (ug/g) | 4.28±0.22a | 6.49±0.12c | 5.21±0.16b |
Microorganisms | |||||||
---|---|---|---|---|---|---|---|
Sample | Mesophilic aerobic total flora | Eschericha coli | Staphylococcus aureus | Clostridium spp | Molds and yeasts | Bacillus cereus | Salmonella spp |
Mitol Minko'o | NE400 | <10 ufc/g | <10 ufc/g | <10 ufc/g | 400 ufc/g | <100ufc/g | Absent |
Campo | >3000000 ufc/g | <10 ufc/g | <10 ufc/g | <10 ufc/g | 30000ufc/g | <100ufc/g | Absent |
TMS 0326 | 13000 ufc/g | <10 ufc/g | <10 ufc/g | <10 ufc/g | 1400 ufc/g | <100ufc/g | Absent |
AFNOR | Association Française de Normalisation |
Ca | Calcium |
HCN | Hydrogen Cyanide |
K | Potassium |
Mg | Manesium |
Mn | Manganese |
Na | Sodium |
PPD | Postharvest Physiological Deterioration |
RDA | Recommended Dietary Allowance |
TMS | Tropical Manihot Selection |
WHO | World Health Organization |
Zn | Zinc |
[1] |
Katz, SH., Weaver, WW. (2020). Cassava, in: Encyclopedia of Food and Culture, Schribner, New York, ISBN 0684805685,
https://www.newworldencyclopedia.org/p/index.php?title=Cassava&oldid=1030031 |
[2] | Burns, A., Gleadow R., Cliff, J., Zacarias, A., Cavagnaro, T. (2010). Cassava: the drought, war and famine crop in a changing world, Sustainability 2(11) 3572–3607. |
[3] | FAOSTAT, 2020. FAO. Online statistical database: food balance. |
[4] | Essono, G., Ayodele, M., Foko, J., Akoa, A., Gockowski, J., Ambang, Z., Bell, J. M., Bekolo, N. (2008). Farmers’ perceptions of practices and constraints in cassava (Manihot esculenta Crantz) chips production in rural Cameroon, African Journal of Biotechnology, 7(22): 4172-4180. |
[5] | Moreno, FL., Parra-Coronado, A., Camachotamayo, JH. (2014). Mathematical Simulation Parameters for Drying of Cassava Starch Pellets, Eng. Agríc. Jaboticabal, 34(6): 1234-1244. |
[6] | Masamba, K., Changadeya, W., Ntawuruhunga, P., Pankomera, P., Mbewe, W., Chipungu, F. (2022). Exploring Farmers’ Knowledge and Approaches for Reducing Post-Harvest Physiological Deterioration of Cassava Roots in Malawi. Sustainability, 14, 2719. |
[7] | Mbassi, JEG., Mapiemfu-Lamare, D., Eyenga, EF., Ngome A. F., (2018). Duration of freezing influences sensory attributes of cassava (Manihot esculenta Crantz) and plantain (Musa paradisiaca AAB). J. Food Technol. Res., 2018, 5(1): 19-27. |
[8] | Njukwe, E., Onadipe, O., Thierno, DA., Hanna, R., Kirscht, H., Maziya-Dixon, B., Araki, S., Mbairanodji A., Ngue-Bissa. T. (2014). Cassava processing among small-holder farmers in Cameroon: Opportunities and challenges. International Journal of Agricultural Policy and Research, 2(4): 113-124. |
[9] | Salcedo, A.; Valle, A. D.; Sanchez, B.; Ocasio, V.; Ortiz, A.; Marquez, P.; Siritunga, D. (2010). Comparative Evaluation of Physiological Post-Harvest Root Deterioration of 25 Cassava (Manihot Esculenta) Accessions: Visual vs. Hydroxycoumarins Fluorescent Accumulation Analysis. Afr. J. Agric. Res., 5, 3138–3144. |
[10] | Onyenwoke, C. A., Simonyan, K. J. (2014). Cassava Post-Harvest Processing and Storage in Nigeria: A Review. Afr. J. Agric. Res. 9, 3853–3863. |
[11] | Zainuddin, IM., Fathoni, A., Sudarmonowati, E., Beeching, J. R., Gruissem, W., Vanderschuren, H. (2018). Cassava post-harvest physiological deterioration: from triggers to symptoms. Postharvest Biology and Technology. 142, 115-123. |
[12] | Luna, J., Dufour, D., Tran, T., Pizarro, M., Calle, F., Domínguez, M. G., Hurtado, I. M., Sánchez, T., Ceballos, H. (2020). Post-harvest physiological deterioration in several cassava genotypes over sequential harvests and effect of pruning prior to harvest. Int. J. Food Sci. Technol., 56, 1322–1332. |
[13] | Iyer, S., Mattinson, D. S., Fellman, J. K. (2010). Study of the Early Events Leading to Cassava Root Postharvest Deterioration. Trop. Plant Biol., 3, 151–165. |
[14] | Morante, N., Sánchez, T., Ceballos, H., Calle, F., Perez, J. C., Egesi, C., Cuambe, C. E., Escobar, A. F., Ortiz, D., Chavez, A. L. et al. (2010). Tolerance to Postharvest Physiological Deterioration in Cassava Roots. Crop. Sci., 50, 1333–1338. |
[15] | Ndjouenkeu, R. (2018), Cassava in Central and Western Africa: Postharvest Constraints and Prospects for Research and Market Development. In Cassava; InTech: London, UK, 199–217. |
[16] | Mlingi, N. V., Ndunguru, G. T. (2003). A Review of Post-Harvest Activities for Cassava in Tanzania. In Proceedings of the 13th ISTRC Symposium, Arusha, Tanzania; 2007: 506–513. |
[17] | Salcedo, A. (2011). Insights into the Physiological, Biochemical and Molecular Basis of Postharvest Deterioration in Cassava (Manihot esculenta) Roots. Am. J. Exp. Agric., 1: 414–431. |
[18] | Bechoff, A. (2017). Use and nutritional value of cassava roots and leaves as a traditional food. Burleigh Dodds Science Publishing Limited. |
[19] | Flibert, G., Tankoano, A., Savadogo, A. (2016a). African cassava Traditional Fermented Food: The Microorganism’s Contribution to their Nutritional and Safety Values-A Review. International Journal of Current Microbiology and Applied Sciences, 5(10): 664-687. |
[20] | Anyogu, B., Awamaria, JP., Sutherland, L,. Ouoba, II. (2014). Molecular characterisation and antimicrobial activity of bacteria associated with submerged lactic acid cassava fermentation. Food Control, 39: 119-127. |
[21] | Flibert, G., Donatien, K., Hagrétou, S. L. (2016b). Hygienic Quality and Nutritional Value of Attiéké from Local and Imported Cassava Dough Produced with Different Traditional Starters in Burkina Faso. Food and Nutrition Sciences, 7, 555-565. |
[22] | Oyewole, O., Isah, P. (2012). Locally fermented foods in Nigeria and their significance to national economy: a review. Journal of Recent Advances in Agriculture, 1, 92–102. |
[23] | Fonji, F. T., Temegne, CN., Ngome, F. A. (2017). Quantitative Analysis of Cassava Products and Their Impacts on the Livelihood of Value Chain Actors: Case of the Centre Region of Cameroon. Annual Research & Review in Biology, 15(6), 1–14. |
[24] | Moorthy S. N., Mathew, G. (1998). Cassava Fermentation and Associated Changes in Physicochemical and Functional Properties, Critical Reviews in Food Science and Nutrition, 38: 2, 73-121. |
[25] | Djouldé D. R., Etoa F-X., Essia N. J-J., Mbofung C. M. F. (2003). Fermentation du manioc cyanogène par une culture mixte de Lactobacillus plantarum et Rhizopus Oryzae. Microb. Hyg. Ali. 15(44): 9–13. |
[26] | Falade, KO., Akingbala, JO. (2010). Utilization of Cassava for Food. Food Reviews International, 27(1), 51-83. |
[27] | Djoulde, DR., Essia, NJ-J., Etoa F-X. (2007). Nutritive Value, Toxicological and Hygienic Quality of Some Cassava Based Products Consumed in Cameroon. Pakistan Journal of Nutrition 6(4): 404-408. |
[28] | Agbor, ET., Lape, MI., (2006). The effects of processing techniques in reducing cyanogen levels during the production of some Cameroonian cassava foods. Journal of Food Composition and Analysis 19, 354–363. |
[29] | Oyewole, OB., Ogundele, SL. (2001). Effect of length of fermentation on the functional characteristics of fermented cassava 'fufu'. The Journal of Food Technology in Africa, 6(2), 38-40. |
[30] | Künsch, U., Schärer, H., Patrian, B., Hurter, J., Conedera, M., Sassella, A., Jelmini, G. (1999). Quality assessment of chestnut fruits. Acta Horticulturae 494, 119–122. |
[31] | Van, S. P., Robertson, J., Lewis, B. (1991). Methods for dietary fiber, detergent fiber, and 456 non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci, 74: 3583-3597. |
[32] | AFNOR: Association Française de Normalisation (1995). NFT 60–2201995; détermination de l'indice de péroxyde. Association Française de Normalisation, Paris, France. |
[33] | AFNOR (Association Francaise de Normalisation) (1982) Recueil des normes francaises des produits dérivés des fruits et légumes. Jus de fruits, Paris, 327 pages. |
[34] | Ikédiobi, CO., Onyia, GOC., Eluwa CE. (1980). A rapid and inexpensive assay for total Cyanid in Cassava (Manihot esculenta Crantz) and cassava Products, Agr. biol. chem., 44, 2803-2809. |
[35] | Nkoudou, NZ., Essia, JJN. (2017). Cyanides reduction and pasting properties of cassava (Manihot esculenta Crantz) flour as affected by fermentation process. Food and Nutrition, 8, 326–333. |
[36] | Adeleke, DM., Shittu, TA., Abass, AB., Awoyale W., Awonorin, SO., Eromosele, CO. (2020). Physicochemical properties, rheology, and storage stability of salad creams made from different cassava starch varieties. J Food Process Preserv.; 00: e14662. |
[37] | Oluwatoyin, A., Sajid, L., Adebayo, A., Müller, JID. (2018). Comparing Characteristics of Root, Flour and Starch of Biofortified Yellow-Flesh and White-Flesh Cassava Variants, and Sustainability Considerations: A Review. Sustainability, 10, 3089. |
[38] | Opara, UL. (1999). Cassava storage. CIGR Handbook of Agricultural Engineering Agro. St. Joseph, MI, American Society of Agricultural Engineers. IV. |
[39] | Opara, UL. (2009). Postharvest technology of root and tuber crops. In: R. Dris, R. Niskanen & S. M. Jain (Eds.), Crop management and post-harvest handling of horticultural product. Science publishers Inc. 382-406. |
[40] | Buschmann, H., Reilly, K., Rodriguez, MX., Tohme, J., Beeching, JR. (2000). Hydrogen peroxide and flavan-3-ols in storage roots of cassava (Manihot esculenta Crantz) during postharvest deterioration. J. Agr. Food Chem., 48, 5522-5529. |
[41] | Sánchez, T., Chavez, A. L., Ceballos, H., Rodriguez-Amaya, D. B., Nestel, P., Ishitani, M. (2006). Reduction or delay of post-harvest physiological deterioration in cassava roots with higher carotenoid content. Journal of the Science of Food and Agriculture 86(4): 634-639. |
[42] | Nwabueze, T., Odunsi, F. (2007). Optimization of process conditions for cassava (Manihot esculenta) lafun production. African Journal of Biotechnology, 6(5), 603–611. |
[43] | Onitilo, MO., Sanni, LO., Daniel, I., Maziya-Dixon, B., Dixon, A. (2007). Physicochemical and functional properties of native starches from cassava varieties in Southwest Nigeria. Journal of Food Agriculture and Environment, 5(34), 108-114. |
[44] | Rinaldi, MM., Vieira, AE., Fialho, JF. (2019). Postharvest conservation of minimally processed cassava roots subjected to different packaging systems. Jaboticabal 47(2), 144–155. |
[45] | Peleg, G. M. (1987). Physical measures of texture. Food Texture. New York. |
[46] | Nkoudou, NZ., Engama, MMJ., Essia, NJJ. (2021). New retting method of cassava roots improve sensory attributes of Bobolo and Chikwangue in Central Africa: An approach through just about right (JAR) test. Emirates Journal of Food and Agriculture. 33(6): 475-482. |
[47] | Rosales-soto, MU., Ross, CF., Younce, F., Fellman, JK., Mattinson SD., Huber K., Powers, JR. (2016). Physico-chemical and sensory evaluation of cooked fermented protein fortified cassava (manihot esculenta crantz) flour. Advances in Food Technology and Nutritional Sciences Open Journal, 2(1), 9-18. |
[48] | Dufour, D., O’ Brein, GM., Best, R. (2002). Cassava flour and starch: progress in research and development. International Center for Tropical Agriculture (CIAT), Apartado Aereo 6713, Cali, Colombia. |
[49] | Otegbayo,. B., Aina,. J., Asiedu,. R., Bokanga, M. (2006). Pasting characteristics of fresh yams (Dioscorea spp.) as indicators of textural quality in a major food product- – pounded yam. Food Chemistry, 99, 663–669. |
[50] | Bezerra, VL., Pereira, RGFA., Carvalho, VD., Vilela, ER. (2002). Raízes de mandioca minimamente processadas: efeito do branqueamento na qualidade e na conservação. Ciência e Agrotecnologia 26(3): 564-557. |
[51] | Agiriga, A., Iwe, M. (2016). Optimization of chemical properties of cassava varieties harvested at different times using response surface methodology. American Journal of Advanced Food Science and Technology 4, 10–21. |
[52] | Nyirendah, DB., Afoakwa, EO., Asiedu, C., Budu A.S., Karltun, CL. (2012). Chemical composition and cyanogenic potential of traditional and high yielding CMD resistant cassava (Manihot esculenta Crantz) varieties. International Food Research Journal, 19(1), 175–181. |
[53] | Zambranoa, MV., Baishali, D., Mercer, DG., MacLean, HL., Touchie, MF. (2019). Assessment of moisture content measurement methods of dried food products in small-scale operations in developing countries: A review. Trends in Food Science & Technology 88 484–496. |
[54] | Montagnac, JA., Davis, CR., Tanumihardjo, SA. (2009). Nutritional Value of Cassava for use as a Staple Food and Recent Advances for Improvement. Comprehensive Review in Food Science and Food Safety, 8(3), 181–188. |
[55] | Somendrika, MAD., Wickramasinghe, I., Wansapala, MAJ., Peiris S. (2016). Analyzing Proximate Composition of Macro Nutrients of Sri Lankan Cassava Variety “Kirikawadi”. Pakistan Journal of Nutrition, 15(3): 283-287. |
[56] | Brauman, A., Keleke, S., Malonga, M., Miambi, E., Ampe, F. (1996), Microbiological characterization of cassava retting a traditional lactic acid fermentation for foo-foo (cassava flour) production. Applied and Environmental Microbiology. 62: 2854–2858. |
[57] | Bayata, A. (2019). Review on Nutritional Value of Cassava for Use as a Staple Food. Science Journal of Analytical Chemistry. 7(4), 83-91. |
[58] | Manano, J., Ogwok, P., Byarugababazirake GW. (2018). Chemical composition of major cassava varieties in Uganda. Targeted for Industrialisation, 7(1), 1–9. |
[59] | Charles, A. L., Sriroth, K., Huang, TC. (2005). Proximate composition, mineral contents, hydrogen cyanide and phytic acid of 5 cassava genotypes. Food Chem. 92, 615–620. |
[60] | Bradbury, JH., Holloway, WD. (1988). Chemistry of Tropical Root Crops: Significance for Nutrition and Agriculture in the Pacific; Australian Centre for International Agricultural Research: Canberra, Australia, 76–104. |
[61] | Buitrago, JA. (1990). La Yucca en la Alimentacion Animal; Centro Internacional de Agricultura Tropical: Cali, Colombia. |
[62] | Daemo, BB., Yohannes, DB, Beyene, TM., Abtew, WG. (2022). Biochemical Analysis of Cassava (Manihot esculenta Crantz) Accessions in Southwest of Ethiopia. Journal of Food Quality, 9904103, |
[63] | Mehouenou, FM., Dassou, A., Sanoussi, F., Dansi, A., Adjatin, A., Dansi, M., Assogba, P., Ahissou H. (2006). Physicochemical characterization of cassava (Manihot esculenta cruntz) elite cultivar of southern Benin. International Journal of Advanced Research in Biological Sciences, 3(3): 190-199. |
[64] | Sarkiyayi, S., Agar, TM. (2010). Comparative analysis on the nutritional and antinutritional contents of the sweet and bitter cassava varieties. Advance Journal of Food Science and Technology 2(6): 328-334. |
[65] | Ihekoronye, AI., Ngoddy, PO. (1985). Tropical fruits and vegetables. Integrated Food Science and Technology for the Tropics, 293-311. |
[66] | Lasekan, O., Hosnas, R., Siew, NG., Mee, L., Azeez, S., Li T., Gholivand, S., Shittu, R. (2016), Identification of aromatic compounds and their sensory characteristics in cassava flakes and “garri” (Manihot esculenta Crantz). CyTA - Journal of Food 14(1): 154–161. |
[67] | Otache, MA., Ubwa, ST., Godwin, AK. (2017). Proximate anlysis and mineral composition of peels of three sweet cassava cultivars. Asian J. Phys. Chem. Sci., 3, 1–10. |
[68] | Idugboe, OD., Nwokoro, SO., Imasuen, JA. (2015). Chemical composition of cassava peels collected from four locations (Koko, Warri, Okada and Benin City), Brewers’ spent yeast and three grades os caspeyeast. Int. J. Sci. Res., 6, 1439–1442. |
[69] | Peprah. BB., Parkes, EY., Harrison, OA., van Biljon, A., Steiner-Asiedu M., Labuschagne, MT. (2020). Proximate Composition, Cyanide Content, and Carotenoid Retention after Boiling of Provitamin A-Rich Cassava Grown in Ghana. Foods 9, 1800; |
[70] | Adugna, M., Ketema, M., Goshu, D., Debebe, S. (2019). Market outlet choice decision and its effect on income and productivity of smallholder vegetable producers in Lake Tana basin, Ethiopia. Review of Agricultural and Applied Economics 22(1) 83-90. |
[71] | Njankouo, NN., Mounjouenpou, P., Kansci, G., Kenfack, MJ., Meguia MPF., Ngono, ENSN., Akhobakohb MM., Nyegue MA. (2019). Influence of cultivars and processing methods on the cyanide contents of cassava (Manihot esculenta Crantz) and its traditional food products. Scientific African 5, e00119. |
[72] | Chotineeranat, S., Suwansichon, T., Chompreeda, P., Piyachomkwan, K., Vichukit, V., Sriroth, K., Haruthaithanasan, V. (2006). Effect of Root Ages on the Quality of Low Cyanide Cassava Flour from Kasetsart 50. Kasetsart J. (Nat. Sci.) 40: 694-701(2006). |
[73] | Adeniji, TA. (2013). Review of Cassava and Wheat Flour Composite in Bread Making: Prospects for Industrial Application. The African Journal of Plant Science and Biotechnology, 7, 1–8. |
[74] | Faezah, ON., Aishah, SH., Kalsom, UY. (2013). Comparative evaluation of organic and inorganic fertilizers on total phenolic, total flavonoid, antioxidant activity and cyanogenic glycosides in cassava (Manihot esculenta), Afr. J. Biotechnol., 12(18) 2414–2421. |
[75] | Siritunga, D., Sayre, RT. (2003). Generation of cyanogen-free transgenic cassava. Planta, 217: 367–373. |
[76] | Ubwa, ST., Otache, MA., Igbum, GO., Shambe, TS. (2015). Determination of Cyanide Content in Three Sweet Cassava Cultivars in Three Local Government Areas of Benue State, Nigeria. Food and Nutrition Sciences, 6, 1078-1085. |
[77] | Bradbury, JH. (2004). Processing of cassava to reduce cyanide content. Cassava Cyanide Disease. Network News (CCDN), 3: 3-4. 1. |
[78] | Adepoju, OT., Adekola, YG., Mustapha, SO., Ogunolan, SI. (2010). Effect of processing methods on nutrient retention and contribution of cassava to nutrient intake of Nigerian consumers. Afr. J. Food Agric. Nutr. Dev., 10(2): 2099-2111. |
[79] | Adewusi, SRA., Ojumu, TV., Falade, OS. (1999). The effect of processing on total organic acids content and mineral availability of simulated cassava-vegetable diets. Plant Food for Human Nutrition 53: 367- 380. |
[80] | Ajai A. I., Paiko Y. B., Jacob J. O., Ndamitso MM., Dauda J. (2016). Analysis of Cyanide and Essential Mineral Contents in Raw and Processed Cassava from Minna, Nigeria. American Chemical Science Journal 11(2): 1–6. |
[81] | Ahenkora, K., Kyei, M. A., Marfo, E. K, Banful, B. (1996). Nutritional composition of False Horn Apantu pa plantain during ripening and processing. AfricanCrop Science Journal, 4(2): 243-247. |
[82] | Carvalho, EP., Canhos, VP., Ribeiro, VE., Carvalho, HP. (1996). Polvilho azedo: physical-chemical and microbiological aspects. Pesquisa Agropecuária Brasileira, 31, 129-137. |
[83] | Garcia, MC., Elias, TM., de Oliveira, RK., Soares JMS., Márcio, C. (2019). Microbiological and physicochemical profiles of the sour cassava starch and bagasse obtained from cassava agroindustry. Food Sci. Technol, Campinas, 39(4): 803-809. |
[84] | Assanvo, JB., Agbo, GN., Behi, YEN., Coulin, P., Farah, Z. (2006). Microflora of traditional starter made from cassava for ‘‘attieke´’’ production in Dabou (Cote d’Ivoire). Food Control 17, 37-41. |
[85] | Brasil, Ministério da Saúde. (2001, Jan 02). Resolução RDC n. 12, 02 de janeiro de 2001. Regulamento Técnico sobre Padrões Microbiológicos para Alimentos. Diário Oficial [da] Republica Federativa do Brasil. |
APA Style
Eyenga, E. F., Mbassi, J. E. G., Mouafo, H. T., Zing, B. Z., Nchuaji, T. E., et al. (2024). Effect of Local Fermentation on Sensory, Nutritional and Microbiological Quality of “Bobolo” (Manihot esculenta Crantz). International Journal of Nutrition and Food Sciences, 13(4), 126-139. https://doi.org/10.11648/j.ijnfs.20241304.11
ACS Style
Eyenga, E. F.; Mbassi, J. E. G.; Mouafo, H. T.; Zing, B. Z.; Nchuaji, T. E., et al. Effect of Local Fermentation on Sensory, Nutritional and Microbiological Quality of “Bobolo” (Manihot esculenta Crantz). Int. J. Nutr. Food Sci. 2024, 13(4), 126-139. doi: 10.11648/j.ijnfs.20241304.11
AMA Style
Eyenga EF, Mbassi JEG, Mouafo HT, Zing BZ, Nchuaji TE, et al. Effect of Local Fermentation on Sensory, Nutritional and Microbiological Quality of “Bobolo” (Manihot esculenta Crantz). Int J Nutr Food Sci. 2024;13(4):126-139. doi: 10.11648/j.ijnfs.20241304.11
@article{10.11648/j.ijnfs.20241304.11, author = {Eliane Flore Eyenga and Josiane Emilie Germaine Mbassi and Hippolyte Tene Mouafo and Bertrand Zing Zing and Tang Erasmus Nchuaji and Mercy Bih Loh Achu and Francis Ajebesone Ngome and Wilfred Fon Mbacham}, title = {Effect of Local Fermentation on Sensory, Nutritional and Microbiological Quality of “Bobolo” (Manihot esculenta Crantz) }, journal = {International Journal of Nutrition and Food Sciences}, volume = {13}, number = {4}, pages = {126-139}, doi = {10.11648/j.ijnfs.20241304.11}, url = {https://doi.org/10.11648/j.ijnfs.20241304.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijnfs.20241304.11}, abstract = {Bobolo is a thick fermented, popular traditional food, derived from cassava (Manihot esculenta Crantz) in Cameroon. The physical, sensory, chemical and microbiological characteristics of Bobolo were analyzed, in order to identify the suitable cassava varieties and the local fermentation method with the best nutritional and industrial properties. The range of L* (lightness / darkness), a* (redness / greenness), b* (yellowness / blueness) were 75.00±0.65-80.07±0.60, 3.7±0.57-4.90±0.60, 11.9±08-17.2±0.75 respectively. Sensorial characteristics (color, pasting, and global quality) evaluation reveal that Bobolo made with aerobic fermentation with ferment had the best characteristics and independent of varieties. The campo varieties presented superior characteristics compared to the other varieties. Bobolo of different varieties and the same processed cassava products had an average range of moisture content (40.85±0.91 – 44.36±0.33%), carbohydrates (38.72±0.66 – 40.91±1.12%), protein (1.18±0.04 – 1.44±0.01%), total fat (4.02±0.05 – 4.38±0.14%), crude fiber (1.71±0.05 – 2.77±0.15%), ash (0.28±0.05 – 0.36±0.02%) and cyanure (4.28±0.22 – 6.49±0.12mg/kg) and where they varied significantly between products and variety. The mineral analysis result in the Bobolo samples ranged 0.04±0.00 - 0.07±0.00 mg/100 g Ca, 0.07±0.00 – 0.10±0.00 mg/100 g Mg, 0.74±0.05 – 0.88±0.04 mg/100 g K, 7.82±0.87 – 11.96±1.00 mg/100 g Na, 5.7±0.14 – 8.7±0.14 ug/g Zn and 15.37±0.18- 21.15±0.77 ug/g Mn respectively. The Bobolo produced contained more mesophilic total flora and molds and yeasts and was absent from Eschericha coli, Staphylococcus aureus, Clostridium spp. Bacillus cereus and Salmonella spp. Therefore, the types and varieties of cassava fermentations influence the quality of Bobolo. }, year = {2024} }
TY - JOUR T1 - Effect of Local Fermentation on Sensory, Nutritional and Microbiological Quality of “Bobolo” (Manihot esculenta Crantz) AU - Eliane Flore Eyenga AU - Josiane Emilie Germaine Mbassi AU - Hippolyte Tene Mouafo AU - Bertrand Zing Zing AU - Tang Erasmus Nchuaji AU - Mercy Bih Loh Achu AU - Francis Ajebesone Ngome AU - Wilfred Fon Mbacham Y1 - 2024/07/02 PY - 2024 N1 - https://doi.org/10.11648/j.ijnfs.20241304.11 DO - 10.11648/j.ijnfs.20241304.11 T2 - International Journal of Nutrition and Food Sciences JF - International Journal of Nutrition and Food Sciences JO - International Journal of Nutrition and Food Sciences SP - 126 EP - 139 PB - Science Publishing Group SN - 2327-2716 UR - https://doi.org/10.11648/j.ijnfs.20241304.11 AB - Bobolo is a thick fermented, popular traditional food, derived from cassava (Manihot esculenta Crantz) in Cameroon. The physical, sensory, chemical and microbiological characteristics of Bobolo were analyzed, in order to identify the suitable cassava varieties and the local fermentation method with the best nutritional and industrial properties. The range of L* (lightness / darkness), a* (redness / greenness), b* (yellowness / blueness) were 75.00±0.65-80.07±0.60, 3.7±0.57-4.90±0.60, 11.9±08-17.2±0.75 respectively. Sensorial characteristics (color, pasting, and global quality) evaluation reveal that Bobolo made with aerobic fermentation with ferment had the best characteristics and independent of varieties. The campo varieties presented superior characteristics compared to the other varieties. Bobolo of different varieties and the same processed cassava products had an average range of moisture content (40.85±0.91 – 44.36±0.33%), carbohydrates (38.72±0.66 – 40.91±1.12%), protein (1.18±0.04 – 1.44±0.01%), total fat (4.02±0.05 – 4.38±0.14%), crude fiber (1.71±0.05 – 2.77±0.15%), ash (0.28±0.05 – 0.36±0.02%) and cyanure (4.28±0.22 – 6.49±0.12mg/kg) and where they varied significantly between products and variety. The mineral analysis result in the Bobolo samples ranged 0.04±0.00 - 0.07±0.00 mg/100 g Ca, 0.07±0.00 – 0.10±0.00 mg/100 g Mg, 0.74±0.05 – 0.88±0.04 mg/100 g K, 7.82±0.87 – 11.96±1.00 mg/100 g Na, 5.7±0.14 – 8.7±0.14 ug/g Zn and 15.37±0.18- 21.15±0.77 ug/g Mn respectively. The Bobolo produced contained more mesophilic total flora and molds and yeasts and was absent from Eschericha coli, Staphylococcus aureus, Clostridium spp. Bacillus cereus and Salmonella spp. Therefore, the types and varieties of cassava fermentations influence the quality of Bobolo. VL - 13 IS - 4 ER -