Frequency peak/linear size (ν_p-D) relation gives the strongest correlation among all the currently observable physical properties of Compact Steep Spectrum Sources (CSSs). This strong correlation suggests that the spectral turnover constitutes a characteristic signature of dense gases around the CSS sources which may be used to constrain physical mechanisms that govern the dynamical evolution of CSS sources. We have therefore, carried out statistical analyses to ascertain whether the observed ν_p-D correlation is real or an artifact arising from a possible spectral turnover/radio luminosity (ν_p-P) and/or linear size/radio luminosity (D-P) correlations. Our results show only a marginally significant ν_p-P correlation (correlation coefficient, r≈0.3) and apparently little or no D-P correlation. This suggests that the mechanism for the spectral turnover lies mainly in the source size according to the relation, ν_p~D^(-0.7), with correlation coefficient, r≈-0.9.
Published in | International Journal of Astrophysics and Space Science (Volume 3, Issue 2) |
DOI | 10.11648/j.ijass.20150302.12 |
Page(s) | 20-24 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Galaxies, Quasars, Radio, Luminosity, Redshift
[1] | J. C. Cavalho, “The evolution of GHz-peaked spectrum radio sources”, Astron. And Astrophy., vol. 329, pp. 845 – 852, 1998 |
[2] | D. J. Saikia, S. Jeyakumar, P. J. Wiita, H. S. Sanghera, R. E. Spencer, “Compact steep spectrum radio sources and unification schemes”, Mont. Not. Roy. Ast. Rev., vol. 276, pp. 1215 – 1223, 1995 |
[3] | F. Mantovani, A. Rossetti, W. Junor, D. J. Saikia, C. J. Salter, “Radio polarimetry of compact steep spectrum sources at sub-arcsecond resolution", Astron. and Astrophy., vol. 555, A4, pp. 1 – 12, 2013 |
[4] | I. A. G. Snellen, R. T. Schillizzi, A. G. de Bruyn, G. K. Miley, “Deceleration of relativistic radio components and the morphologies of gigahertz peaked spectrum sources”,Astron. And Astrophy., vol. 333, pp. 70 – 78, 1998a |
[5] | I. A. G. Snellen, R. T. Schillizzi, A. G de Bruyn, G. K. Miley, R. B. Rengelink, H. J. Röttgering, M. N. Bremer, “A new sample of faint gigahertz peaked spectrum radio sources”, Astron. and Astrophy.,vol. 131, pp. 435 – 449, 1998b |
[6] | I. A. G. Snellen, R. T. Schillizzi, G. K. Miley, M. N. Bremer, H. J. Röttgering, H. J. van Langevelde, “Faint Gigahertz peaked spectrum sources and the evolution of young radio sources”, New Astron. Rev. vol. 43, pp. 675 – 679, 1999 |
[7] | C. Fanti, R. Fanti, D. C. Dallacasa, R. T. Schilizzi, R. E.Spencer, C. Stanghellini, “Are compact steep spectrum sources young?”Astron. and Astrophy., vol. 302, pp. 317 – 326, 1995 |
[8] | F. Mantovani, W. Junor, R. Fanti, L. Padrielli, D. J. Saikia, “VLA polarimetry of compact steep spectrum sources”, Astron. and Astrophy., vol. 125, pp 573 – 580, 1997 |
[9] | C. P. O’Dea, “The compact steep spectrum and Gigahertz peaked spectrum radio sources”, Pub. Astron. Soc. Pacific.Vol. 110,pp. 493 – 532, 1998 |
[10] | A. C. S. Readhead, “Evolution of Powerful Extragalactic Radio Sources”, Proc. National Academy of Sciences, pp 11447 – 11450, 1995 |
[11] | I. Owsianik, J. E. Conway, “First detection of hotspot advance in a compact symmetric object: Evidence for a class of very young extragalactic radio sources”, Astron. and Astrophy., vol. 337, pp. 69 – 79, 1998 |
[12] | M. Murgia, R. Fanti, L. Gregorini, U. Klein, K. H. Mark, M. Vigotti, “Synchrotron spectra and ages of compact steep spectrum radio radio sources”, Astron. and Astrophy. vol. 345, pp. 769 – 777, 1999 |
[13] | A. Polatidis, P. N. Wilkinson, W. Xu, A. C. S. Readhead, T. J. Pearson, G. B. Taylor, R. C. Vermeulen, “Compact symmetric objects in a complete flux density limited sample” N.A.R. 43, pp 657 – 661, 1999 |
[14] | S. Tinti, G. De Zotti, “Constraints on evolutionary properties of GHz peaked spectrum galaxies”, Astron. and Astrophy. vol. 445, pp. 889 – 899, 2006 |
[15] | A. Marecki, A. Sokołowska, “Multi-epoch VLBA observations of radio galaxy 0932+075: is this a compact symmetric object?”, Astron. and Astrophy., vol. 569, A22, pp. 1 – 6, 2014 |
[16] | G. Stanghellini, D. Dallacasa, C. P. O’Dea, S. A. Baum, R. Fanti, C. Fanti, “VLBA observations of GHz-peaked spectrum radio sources at 15GHz”, Astron. and astrophy. vol. 377, pp. 377 – 388, 2001 |
[17] | D. Dallacasa, S. Tinti, C. Fanti, L. Fanti, L. Gregorini, C. Stanghellini, M. Vigotti, “The B3-VLA CSS sample II. VLBA images at 18cm”, Astron. and astrophy., vol. 389, pp. 115 – 125, 2002 |
[18] | P. Augusto, J. I. Gonzalez-Serrano, A. C. Edge,N. A. B. Gizani, P. N. Wilkinson, I. Perez-Fouron, “The Kpc-scale source population”, New Astron. Rev., vol. 43, pp. 663 – 667, 1999 |
[19] | A. Labiano, “Tracing jet-ISM interaction in young AGN: correlations between [O III] λ 5007 A ̇ and 5GHz emission”, Astron. and Astrophy., vol. 488, pp. L59 – L62, 2008 |
[20] | G. Stanghellini, C. P. O’Dea, D. Dallacasa, S. A. Baum, R. Fanti, C. Fanti, “A complete sample of GHz-Peaked spectrum radio sources and its radio properties”, Astron. and Astrophy. vol. 131, pp. 303 – 315, 1998 |
[21] | A. C. S. Readhead, G. B. Taylor, W. Xu, T. J. Pearson, P. N. Wilkinson, A. G. Polatidis, “The statistics and ages of compact symmetric objects” Astrophy. Journal, vol. 460, pp. 612 – 633, 1996 |
[22] | N. Kawakatu, M. Kino, “The velocity of large-scale jets in a declining density medium”. RevMex AA(Serie de Conferencias), vol. 27, pp. 192 – 197, 2007 |
[23] | C. Stanghellini, C. P. O’Dea, D. Dallacasa, P. Cassaro, S. A. Baum, R. Fanti, C. Fanti, C., “Extended emission around GPS radio sources”, Astron. and Astrophy., vol. 443, pp. 891 – 902, 2005 |
[24] | A. Labiano, C. P. O’Dea, R. Gelderman, W. H. de Vries, D. J. Axon, P. D. Barthel, S. A. Baum, A. Capetti, R. Fanti, A. M. Koekemoer, R. Morganti, C. N. Tadhunter, “HST/STIs low dispersion spectroscopy of three compact steep spectrum sources”, Astron. and Astrophy., vol. 436, pp. 493 – 501, 2005 |
[25] | S. Jeyakumar, P. J. Wiita, D. J. Saikia, J. S. Hooda, “Jet propagation and the asymmetries of CSS radio sources”, Astron. and Astrophy. vol. 432, pp. 823 – 833, 2005 |
[26] | S. E. Okoye, L. I. Onuora, “Angular diameter-redshift relation for extragalactic radio sources”, Astrophy. Journal, vol. 260, pp. 37 – 43, 1982 |
[27] | A. A. Ubachukwu, J. N.Ogwo, “Luminosity selection effects and linear size evolution in the quasar/galaxy unification scheme”, Aust. Journ. of Phy., vol. 51, pp. 143 – 151, 1998 |
[28] | A. K. Singal, “Evidence against the unified scheme for powerful radio galaxies and quasars”, Mont. Not. Roy. Astron. Soc., vol. 262, pp. L27 – L30, 1993 |
[29] | R. Nilson, M. J. Valtonen, T. Jaakola, “On the redshift-apparent size diagram of double radio sources”, Astrophy. Journ., vol. 413, pp. 453 – 476, 1993 |
[30] | J. C. Ezeugo, A. A. Ubachukwu, “The spectral turnover-linear size relation and the dynamical evolution of compact steep spectrum sources”, Mont. Not. Roy. Astron. Soc., vol. 408, pp. 2256 –2260, 2010 |
APA Style
Ezeugo Jeremiah Chukwuemerie. (2015). On the Dependence of Spectral Turnover on Linear Size of Compact Steep Spectrum Radio Sources. International Journal of Astrophysics and Space Science, 3(2), 20-24. https://doi.org/10.11648/j.ijass.20150302.12
ACS Style
Ezeugo Jeremiah Chukwuemerie. On the Dependence of Spectral Turnover on Linear Size of Compact Steep Spectrum Radio Sources. Int. J. Astrophys. Space Sci. 2015, 3(2), 20-24. doi: 10.11648/j.ijass.20150302.12
AMA Style
Ezeugo Jeremiah Chukwuemerie. On the Dependence of Spectral Turnover on Linear Size of Compact Steep Spectrum Radio Sources. Int J Astrophys Space Sci. 2015;3(2):20-24. doi: 10.11648/j.ijass.20150302.12
@article{10.11648/j.ijass.20150302.12, author = {Ezeugo Jeremiah Chukwuemerie}, title = {On the Dependence of Spectral Turnover on Linear Size of Compact Steep Spectrum Radio Sources}, journal = {International Journal of Astrophysics and Space Science}, volume = {3}, number = {2}, pages = {20-24}, doi = {10.11648/j.ijass.20150302.12}, url = {https://doi.org/10.11648/j.ijass.20150302.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijass.20150302.12}, abstract = {Frequency peak/linear size (ν_p-D) relation gives the strongest correlation among all the currently observable physical properties of Compact Steep Spectrum Sources (CSSs). This strong correlation suggests that the spectral turnover constitutes a characteristic signature of dense gases around the CSS sources which may be used to constrain physical mechanisms that govern the dynamical evolution of CSS sources. We have therefore, carried out statistical analyses to ascertain whether the observed ν_p-D correlation is real or an artifact arising from a possible spectral turnover/radio luminosity (ν_p-P) and/or linear size/radio luminosity (D-P) correlations. Our results show only a marginally significant ν_p-P correlation (correlation coefficient, r≈0.3) and apparently little or no D-P correlation. This suggests that the mechanism for the spectral turnover lies mainly in the source size according to the relation, ν_p~D^(-0.7), with correlation coefficient, r≈-0.9.}, year = {2015} }
TY - JOUR T1 - On the Dependence of Spectral Turnover on Linear Size of Compact Steep Spectrum Radio Sources AU - Ezeugo Jeremiah Chukwuemerie Y1 - 2015/04/30 PY - 2015 N1 - https://doi.org/10.11648/j.ijass.20150302.12 DO - 10.11648/j.ijass.20150302.12 T2 - International Journal of Astrophysics and Space Science JF - International Journal of Astrophysics and Space Science JO - International Journal of Astrophysics and Space Science SP - 20 EP - 24 PB - Science Publishing Group SN - 2376-7022 UR - https://doi.org/10.11648/j.ijass.20150302.12 AB - Frequency peak/linear size (ν_p-D) relation gives the strongest correlation among all the currently observable physical properties of Compact Steep Spectrum Sources (CSSs). This strong correlation suggests that the spectral turnover constitutes a characteristic signature of dense gases around the CSS sources which may be used to constrain physical mechanisms that govern the dynamical evolution of CSS sources. We have therefore, carried out statistical analyses to ascertain whether the observed ν_p-D correlation is real or an artifact arising from a possible spectral turnover/radio luminosity (ν_p-P) and/or linear size/radio luminosity (D-P) correlations. Our results show only a marginally significant ν_p-P correlation (correlation coefficient, r≈0.3) and apparently little or no D-P correlation. This suggests that the mechanism for the spectral turnover lies mainly in the source size according to the relation, ν_p~D^(-0.7), with correlation coefficient, r≈-0.9. VL - 3 IS - 2 ER -