The E-infinity theory particle-wave duality used to compute the density of ordinary and dark energy of the cosmos is extended to meet the black hole complementarity of Susskind and ‘tHooft. A black hole is essentially a relativistic as well as a quantum object. Therefore the information paradox of black holes is a consequence of the clash between these two most fundamental theories of modern physics. It is logical to conclude that a resolution of the problem requires some form of a quantum gravity theory. The present work proposes such a resolution using set theory and pointless spacetime geometry coupled to the afore mentioned extension and the inbuilt self referential character of Cantorian fractal sets.
Published in | American Journal of Astronomy and Astrophysics (Volume 3, Issue 5) |
DOI | 10.11648/j.ajaa.20150305.11 |
Page(s) | 77-86 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Black Holes Complementarity, S. Hawking, G. ‘tHooft, L. Susskind, Transfinite Set Theory, Dvoretzky’s Theorem, Dark Energy, Self referential, Nano Casimir Reactor
[1] | L. Marek-Crnjac: Cantorian Space-Time Theory: The Physics of Empty Sets in Connection With Quantum Entanglement and Dark Energy. Lambert Academic Publishing, Saarbrucken, Germany. ISBN: 978-3-659-12876-9, 2013. |
[2] | Mohamed S. El Naschie: Quantum fractals and the Casimir-dark energy duality – The road to a clean quantum energy nano reactor. Journal of Modern Physics, 6, 2015, pp. 1321-1333. |
[3] | M. S. El Naschie: Some tentative proposals for the experimental verification of Cantorian micro spacetime. Chaos, Solitons & Fractals, 9(12), 1998, pp. 143-144. |
[4] | P. Kumar Chattaraj (Editor): Quantum Trajectories. CRC Press. Taylor & Francis Group, Boca Raton, USA, 2011. |
[5] | M. S. El Naschie: The fractal dimension of spacetime – Remarks on theoretical derivation and experimental verification. Chaos, Solitons & Fractals, 9(7), 1998, pp. 1211-1217. |
[6] | Sir Herman Bondi: Relativity and the Commonsense. A New Approach to Einstein. Heinemann, London, 1964. |
[7] | R. Penrose: The Road to Reality. A Complete Guide to the Laws of the Universe. Jonathan Cape, London, 2004. |
[8] | L. B. Okun: Energy and mass in relativity theory. World Scientific, Singapore 2009. |
[9] | W. Rindler: Relativity (Special, General and Cosmological). Oxford University Press, Oxford. 2004. |
[10] | Mohamed S. El Naschie: On a New Elementary Particle from the Disintegration of the Symplectic ‘tHooft-Veltman-Wilson Fractal Spacetime. World Journal of Nuclear Science and Technology, 4(4), 2014, pp. 216-221. |
[11] | M. A. Helal, L. Marek-Crnjac, Ji-Huan He: The Three Page Guide to the Most Important Results of M. S. El Naschie’s Research in E-Infinity Quantum Physics and Cosmology. Open Journal of Microphysics, 3(4), 2013, pp. 141-145. |
[12] | L. Marek-Crnjac, Ji-Huan He: An Invitation to El Naschie’s Theory of Cantorian Space-Time and Dark Energy. International Journal of Astronomy and Astrophysics, 3(4), 2013, pp. 464-471. |
[13] | Jean-Paul-: E-Infinity Dualities, Discontinuous Spacetimes, Xonic Quantum Physics and the Decisive Experiment. Journal of Modern Physics, 5(15), 2014, pp. 1427-1436. |
[14] | Mohamed S. El Naschie: Quantum Entanglement as a Consequence of a Cantorian Micro Spacetime Geometry. Journal of Quantum Information Science, 1(2), 2011, pp. 50-53. |
[15] | Mohamed S. El Naschie: A Resolution of Cosmic Dark Energy via a Quantum Entanglement Relativity Theory. Journal of Quantum Information Science, 3(1), 2013, pp. 23-26. |
[16] | M. S. El Naschie: A Unified Newtonian-Relativistic Quantum Resolution of the Supposedly Missing Dark Energy of the Cosmos and the Constancy of the Speed of Light. International Journal of Modern Nonlinear Theory and Application, 2(1), 2013, pp. 43-54. |
[17] | Mohamed S. El Naschie: Quantum Entanglement: Where Dark Energy and Negative Gravity plus Accelerated Expansion of the Universe Comes From. Journal of Quantum Information Science, 3(2), 2013, pp. 57-77. |
[18] | Mohamed S. El Naschie: A Fractal Menger Sponge Space-Time Proposal to Reconcile Measurements and Theoretical Predictions of Cosmic Dark Energy. International Journal of Modern Nonlinear Theory and Application, 2(2), 2013, pp. 107-121. |
[19] | Mohamed S. El Naschie: The Hydrogen Atom Fractal Spectra, the Missing Dark Energy of the Cosmos and Their Hardy Quantum Entanglement. International Journal of Modern Nonlinear Theory and Application, 2(3), 2013, pp. 167-169. |
[20] | Mohamed S. El Naschie: A Rindler-KAM Spacetime Geometry and Scaling the Planck Scale Solves Quantum Relativity and Explains Dark Energy. International Journal of Astronomy and Astrophysics, 3(4), 2013, pp. 483-493. |
[21] | M. S. El Naschie: What Is the Missing Dark Energy in a Nutshell and the Hawking-Hartle Quantum Wave Collapse. International Journal of Astronomy and Astrophysics, 3(3), 2013, pp. 205-211. |
[22] | Mohamed S. El Naschie: The Missing Dark Energy of the Cosmos from Light Cone Topological Velocity and Scaling of the Planck Scale. Open Journal of Microphysics, 3(3), 2013, pp. 64-70. |
[23] | Mohamed S. El Naschie: From Yang-Mills Photon in Curved Spacetime to Dark Energy Density. Journal of Quantum Information Science, 3(4), 2013, pp. 121-126. |
[24] | Mohamed S. El Naschie: Calculating the Exact Experimental Density of the Dark Energy in the Cosmos Assuming a Fractal Speed of Light. International Journal of Modern Nonlinear Theory and Application, 3(1), 2014, pp. 1-5. |
[25] | Mohamed S. El Naschie: Cosmic Dark Energy Density from Classical Mechanics and Seemingly Redundant Riemannian Finitely Many Tensor Components of Einstein’s General Relativity. World Journal of Mechanics, 4(6), 2014, pp. 153-156. |
[26] | Mohamed S. El Naschie: Capillary Surface Energy Elucidation of the Cosmic Dark Energy—Ordinary Energy Duality. Open Journal of Fluid Dynamics, 4(1), 2014, pp. 15-17. |
[27] | Mohamed S. El Naschie: Einstein’s General Relativity and Pure Gravity in a Cosserat and De Sitter-Witten Spacetime Setting as the Explanation of Dark Energy and Cosmic Accelerated Expansion. International Journal of Astronomy and Astrophysics, 4(2), 2014, pp. 332-339. |
[28] | Mohamed S. El Naschie: Electromagnetic—Pure Gravity Connection via Hardy’s Quantum Entanglement. Journal of Electromagnetic Analysis and Applications, 6(9), 2014, pp. 233-237. |
[29] | Mohamed S. El Naschie: Cosmic Dark Energy from ‘t Hooft’s Dimensional Regularization and Witten’s Topological Quantum Field Pure Gravity. Journal of Quantum Information Science, 4(2), 2014, pp. 83-91. |
[30] | Mohamed S. El Naschie: Entanglement of E8E8 Exceptional Lie Symmetry Group Dark Energy, Einstein’s Maximal Total Energy and the Hartle-Hawking No Boundary Proposal as the Explanation for Dark Energy. World Journal of Condensed Matter Physics, 4(2), 2014, pp. 74-77. |
[31] | Mohamed S. El Naschie: The Meta Energy of Dark Energy. Open Journal of Philosophy. 4(2), 2014, pp. 157-159. |
[32] | Mohamed S. El Naschie: Pinched Material Einstein Space-Time Produces Accelerated Cosmic Expansion. International Journal of Astronomy and Astrophysics. 4(1), 2014, pp. 80-90. |
[33] | Mohamed S. El Naschie: From Chern-Simon, Holography and Scale Relativity to Dark Energy. Journal of Applied Mathematics and Physics, 2(7), 2014, pp. 634-638. |
[34] | Mohamed S. El Naschie: Why E Is Not Equal to mc2. Journal of Modern Physics, 5(9), 2014, pp. 743-750. |
[35] | Mohamed S. El Naschie: Nash Embedding of Witten’s M-Theory and the Hawking-Hartle Quantum Wave of Dark Energy. Journal of Modern Physics, 4(10), 2013, pp. 1417-1428. |
[36] | Mohamed S. El Naschie: Dark Energy from Kaluza-Klein Spacetime and Noether’s Theorem via Lagrangian Multiplier Method. Journal of Modern Physics, 4(6), 2013, pp. 757-760. |
[37] | Mohamed S. El Naschie: The hyperbolic Extension of Sigalotti-Hendi-Sharifzadeh’s Golden Triangle of Special Theory of Relativity and the Nature of Dark Energy. Journal of Modern Physics, 4(3), 2013, pp. 354-356. |
[38] | Mohamed S. El Naschie: Topological-Geometrical and Physical Interpretation of the Dark Energy of the Cosmos as a ‘Halo’ Energy of the Schrodinger Quantum Wave. Journal of Modern Physics, 4(5), 2013, pp. 591-596. |
[39] | M. S. El Naschie: From Modified Newtonian Gravity to Dark Energy via Quantum Entanglement. Journal of Applied Mathematics and Physics, 2(8), 2014, pp. 803-806. |
[40] | Ji-Huan He, L. Marek-Crnjac: Mohamed El Naschie’s Revision of Albert Einstein’s E = m0c2: A Definite Resolution of the Mystery of the Missing Dark Energy of the Cosmos International. Journal of Modern Nonlinear Theory and Application, 2(1), 2013, pp. 55-59. |
[41] | M. S. El Naschie, L. Marek-Crnjac: Deriving the Exact Percentage of Dark Energy Using a Transfinite Version of Nottale’s Scale Relativity. International Journal of Modern Nonlinear Theory and Application, 1(4), 2012, pp. 118-124. |
[42] | Mohamed S. El Naschie, Atef Helal: Dark Energy Explained via the Hawking-Hartle Quantum Wave and the Topology of Cosmic Crystallography. International Journal of Astronomy and Astrophysics, 3(3), 2013, pp. 318-343. |
[43] | L. Marek-Crnjac, Mohamed S. El Naschie: Chaotic Fractal Tiling for the Missing Dark Energy and Veneziano Model. Applied Mathematics, 4(11B), 2013, pp. 22-29. |
[44] | L. Marek-Crnjac, M. S. El Naschie: Quantum Gravity and Dark Energy Using Fractal Planck Scaling. Journal of Modern Physics, 4(11A), 2013, pp. 31-38. |
[45] | Jean Paul Auffray: E-infinity, the zero set, absolute space and photon spin. Journal of Mondern Physics, 6(5), 2015, pp. 536. |
[46] | M. S. El Naschie, S. Olsen, J. H. He, S. Nada, L. Marek-Crnjac, A. Helal: On the Need for Fractal Logic in High Energy Quantum Physics. International Journal of Modern Nonlinear Theory and Application, 1(3), 2012, pp. 84-92. |
[47] | Mohamed Salah El Naschie, Leila Marek-Crnjac, Mohamed Atef Helal, Ji-Huan He: A Topological Magueijo-Smolin Varying Speed of Light Theory, the Accelerated Cosmic Expansion and the Dark Energy of Pure Gravity. Applied Mathematics, 5(12), 2014, pp. 1780-1790. |
[48] | Mohamed S. El Naschie: Compactified dimensions as produced by quantum entanglement, the four dimensionality of Einstein’s smooth spacetime and ‘tHooft’s 4- ε fractal spacetime. American Journal of Astronomy & Astrophysics, 2(3), 2014, pp. 34-37. |
[49] | Mohamed S. El Naschie: Hardy's Entanglement as the Ultimate Explanation for the Observed Cosmic Dark Energy and Accelerated Expansion. International Journal High Energy Physics, 1(2), 2014, pp. 13-17. |
[50] | Mohamed S. El Naschie: Deriving E = mc2 /22 of Einstein’s ordinary quantum relativity energy density from the Lie symmetry group SO(10) of grand unification of all fundamental forces and without quantum mechanics. American Journal of Mechanics & Applications, 2(2), 2014, pp. 6-9. |
[51] | Mohamed S. El Naschie: Cosserat-Cartan Modification of Einstein-Riemann Relativity and Cosmic Dark Energy Density. American Journal of Modern Physics. 3(2), 2014, pp. 82-87. |
[52] | Mohamed S. El Naschie: Asymptotically safe pure gravity as the source of dark energy of the vacuum. Int. Journal Astrophysics & Space Science, 2(1), 2014, pp. 12-15. |
[53] | Mohamed S. El Naschie: Logarithmic Running of 't Hooft-Polyakov Monopole to Dark Energy. International Journal of High Energy Physics, 1(1), 2014, pp. 1-5. |
[54] | Mohamed S. El Naschie: Experimentally Based Theoretical Arguments that Unruh's Temperature, Hawking's Vacuum Fluctuation and Rindler's Wedge Are Physically Real. American Journal of Modern Physics, 2(6), 2013, pp. 357-361. |
[55] | L. Marek-Crnjac: Modification of Einstein’s E = mc2 to E = (1/22)mc2. American Journal of Modern Physics, 2(5), 2013, pp. 255-263. |
[56] | M. S. El Naschie: The quantum gravity Immirzi parameter – A general physical and topological interpretation. Gravitation and Cosmology, 19(3), 2013, pp. 151-155. |
[57] | M. S. El Naschie: Determining the missing dark energy density of the cosmos from a light cone exact relativistic analysis. Journal of Physics, 2(2), 2013, pp. 19-25. |
[58] | M. S. El Naschie: The quantum entanglement behind the missing dark energy. Journal of Modern Physics and Applications, 2(1), 2013, pp. 88-96. |
[59] | M. S. El Naschie: Dark energy via quantum field theory in curved spacetime. Journal Modern Physics and Applications, 2, 2014, pp. 1-7. |
[60] | M. S. El Naschie: Rindler space derivation of dark energy. Journal of Modern Physics Applications. 6, 2014, pp. 1-10. |
[61] | Wei Tang et al: From nonlocal elasticity to nonlocal spacetime and nano science. Bubbfil Nanotechnology. 1(1), 2014, pp. 3-12. |
[62] | M. S. El Naschie: To dark energy theory from a Cosserat-like model of spacetime. Problems of Nonlinear Analysis in Engineering Systems. 1(41), Vol. 20, 2014, pp. 79-98. |
[63] | M. S. El Naschie: Revising Einstein’s E = mc2; A theoretical resolution of the mystery of dark energy. Proceedings of the Fourth Arab Int. Conference in Physics and Material Science, Egypt. 1-30 October, 2012, pp. 1. |
[64] | K. M. Ball: Volume ratios and a reverse isoperimetric inequality. Journal of London Mathematical Society. 44, 1991, pp. 351-359. |
[65] | G. Pisier: The volume of convex bodies and Banach space geometry. Tracts in Math 94, Cambridge University Press, Cambridge, 1989. |
[66] | B.S. Kasin: The width of certain finite-dimensional sets and classes of smooth functions. IZV. Akad. Nauk. SSSR. Ser. Mat. 41(2), 1977, pp. 334-351 (in Russian). |
[67] | O. Guedon: Concentration phenomena in high dimensional geometry. arXiv: 1310.1204V1[math]4 Oct 2013. |
[68] | Ji-Huan He (Guest Editor): Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics. 3(1). Special issue on recent developments on dark energy and dark matter, 2013, pp. 1-62. |
[69] | Ji-Huan He, M. S. El Naschie: On the monadic nature of quantum gravity as a highly structured golden ring, spaces and spectra. Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics. 2(2), 2012, pp. 94-98. |
[70] | M. S. El Naschie: Towards a general transfinite set theory for quantum mechanics. Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics. 2(2), 2012, pp. 135-142. |
[71] | M. S. El Naschie, Ji-Huan He, S. Nada, L. Marek-Crnjac, M. Helal: Golden mean computer for high energy physics. Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics. 2(2), 2012, pp. 80-92. |
[72] | M. S. El Naschie: The minus one connection of relativity, quantum mechanics and set theory. Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics. 2(2), 2012, pp. 131-134. |
[73] | M. S. El Naschie: Dark energy and its cosmic density from Einstein’s relativity and gauge fields renormalization leading to the possibility of a new ‘tHooft quasi particle. The Open Journal of Astronomy. In press. |
[74] | M. S. El Naschie: A review of E-infinity and the mass spectrum of high energy particle physics. Chaos, Solitons & Fractals, 19(1), 2004, pp. 209-236. |
[75] | M. S. El Naschie: The theory of Cantorian spacetime and high energy particle physics (An informal review). Chaos, Solitons & Fractals, 41, 2009, pp. 2635-2646. |
[76] | A. Connes: Noncommutative Geometry. Academic Press, San Diego, USA, 1994. |
[77] | S. G. Krantz and H.R. Parks: Geometric Integration Theory. Birkhauser, Boston, USA, 2008. |
[78] | M. S. El Naschie: Remarks on super strings, fractal gravity, Nagasawa’s diffusion and Cantorian spacetime. Chaos, Solitons & Fractals, 8(11), 1997, pp. 1873-1886. |
[79] | M. S. El Naschie: Introduction to nonlinear dynamics, general relativity and the quantum – The uneven flow of fractal time. Chaos, Solitons & Fractals, 8(5), 1997, pp. vii-x. |
[80] | M. S. El Naschie: Hyper-dimensional geometry and the nature of physical spacetime. Chaos, Solitons & Fractals, 10(1), 1999, pp. 155-158. |
[81] | M. S. El Naschie: E-infinity – High Energy Communications Nos. 1-90. April 2010 to December 2012. |
[82] | Chen Nanxian: Möbius inversion in physics. World Scientific, Singapore 2010. |
[83] | Ji-Huan He: A tutorial review on fractal spacetime and fractional calculus. Int. Journal of Theoretical Physics, 53(11), 2014, pp. 3698-3718. |
[84] | M. S. El Naschie: On twistors in Cantorian E-infinity space. Chaos, Solitons & Fractals, 12(4), 2001, pp. 741-746. |
[85] | O. E. Rössler: Endophysics, World Scientific, Singapore (1998). |
[86] | M. S. El Naschie: On a general theory for quantum gravity. In ‘Science of the Interface. Editor H. Diebner, T. Druckrey and P. Weibel. Genista Verlag, Tübingen, Germany, 2001. |
[87] | Miao Li: A model of holographic dark energy. Physics Letters B, 603(1-2), 2004, pp. 1-5. |
[88] | M. S. El Naschie: Holographic dimensional reduction. Center manifold theorem and E-infinity. Chaos, Solitons & Fractals, 29(4), 2006, pp. 816-822. |
[89] | A. P. Balachandran, S. Kürkcüoglu, S. Vaidya: Lectures on fuzzy and fuzzy Susy physics. World Scientific, Singapore 2007. |
[90] | J. Bahcall, T. Piran and S. Weinberg (Editors): Dark Matter in the Universe. World Scientific, Singapore (2004). |
[91] | L. Amendola and S. Tsujikawa: Dark Energy: Theory and Observations. Cambridge University Press, Cambridge 2010. |
[92] | P. Ruiz-Lapuente, Dark Energy, Observational and Theoretical Approaches. Cambridge University Press, Cambridge, 2010. |
[93] | M. S. El Naschie: From E = mc2 to E = mc2/22 – A short account of the most famous equation in physics and its hidden quantum entangled origin. Journal of Quantum Information Science, 4, 2014, pp. 284-291. |
[94] | M. S. El Naschie: Casimir-like energy as a double Eigenvalue of quantumly entangled system leading to the missing dark energy density of the cosmos. International Journal of High Energy Physics, 1(5), 2014, pp. 55-63. |
[95] | S. Perlmutter et al, Supernova cosmology project collaboration “Measurements of omega and lambda from 42 high redshift supernova. Astrophysics Journal, 517, 1999, pp. 565-585. |
[96] | Mohamed S. El Naschie: On a non-perturbative quantum relativity theory leading to a Casimir-dark energy nanotech reactor proposal. Open Journal of Applied Science, 2015. (Accepted for publication and currently in press). |
[97] | Vijay Kodiyalam and V. S. Sunder: Topological Quantum Field Theories From Subfactors. Chapma & Hall/Crc, London, UK, 2001. |
[98] | M. S. El Naschie: A few hints and some theorem about Witten’s M theory and T-duality. Chaos, Solitons & Fractals, 25(3), 2005, pp. 545-548. |
[99] | L. Marek-Crnjac, Mohamed S. El Naschie: Ji-Huan He: Chaotic Fractals at the Root of Relativistic Quantum Physics and Cosmology. International Journal of Modern Nonlinear Theory and Application, 2(1A), 2013, pp. 78-88. |
[100] | S. T. Yau and S. Nadis: The Shape of Inner Space. Basic Book, Persens Group, New York (2010). |
[101] | J. S. Bell: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge, 1991. |
[102] | W. Rindler: Introduction to Special Relativity. Oxford Science Publications, Oxford 1991. |
[103] | M. S. El Naschie: Hilbert space, Poincaré dodecahedron and golden mean transfiniteness. Chaos, Solitons & Fractals, 31(4), 2007, pp. 787-793. |
[104] | Mohamed S. El Naschie: Quantum entanglement as a consequence of a Cantorian micro spacetime geometry. Journal of Quantum Information Science, 1(2), 2011, pp. 50-53. |
[105] | L. Hardy: Nonlocality of two particles without inequalities for almost all entangled states. Phys. Rev. Lett. 71(11), p. 1665-1668, 13 September (1993). |
[106] | D. Mermin: Quantum mysteries refined. American J. Phys. 62(10) (1994). |
[107] | P. S. Addison: Fractals and Chaos: An Illustrated Course. Institute of Physics, Bristol, 1997. |
[108] | D. Ruelle: Chance and Chaos, Princeton University Press, New Jersey, USA, 1991. |
[109] | L. Graham and Jean-Michel Kantor: Naming Infinity. The Belknap Press of Harvard University Press, Cambridge, Massachusetts-London, 2009. |
[110] | E. Ott: Chaos in Dynamical Systems, Cambridge University Press, Cambridge, UK, 1993. |
[111] | T. Kapitaniak (Editor): Chaotic Oscillators (Theory and Applications), World Scientific, Singapore, 1992. |
[112] | G. Casati, I. Guarneri and U. Smilansky: Quantum Chaos, North Holland, Amsterdam, Netherlands, 1993. |
[113] | Y. S. Kim and M. E. Noz: Phase Space Picture of Quantum Mechanics, World Scientific, Singapore, 1991. |
[114] | H. M. Fried: Modern Functional Quantum Field Theory, World Scientific, Singapore, 2014. |
[115] | M. S. El Naschie: Young double-slit experiment, Heisenberg uncertainity principle and correlation in Cantorian spacetime. In Quantum Mechanics, Diffusion and Chaotic Fractals. Editors M. S. El Naschie, O. E. Rössler and I. Prigogine: Pergamon Press/Elsevier, Oxford ISBN: 0080420273 (1995), pp. 93-100. |
[116] | M. S. El Naschie: Iterated function system, information and the two-slit experiment of quantum mechanics. In Quantum Mechanics, Diffusion and Chaotic Fractals. Editors M.S. El Naschie, O.E. Rössler and I. Prigogine: Pergamon Press/Elsevier, Oxford ISBN: 0080420273 (1995), pp. 185-189. |
[117] | M. S. El Naschie: Quantum measurement, information, diffusion and Cantorian geodesic. In Quantum Mechanics, Diffusion and Chaotic Fractals. Editors M.S. El Naschie, O.E. Rössler and I. Prigogine: Pergamon Press/Elsevier, Oxford ISBN: 0080420273 (1995), pp. 191-205. |
[118] | Mohamed S. El Naschie: Hubble scale dark energy meets nano scale Casimir energy and the rational of their T-duality and mirror symmetry equivalence. World Journal of Nano Science and Engineering, 5, 2015, pp. 57-67. |
[119] | Mohamed S. El Naschie: An exact mathematical picture of quantum spacetime. Advances in Pure Mathematics, 2015, 5, pp. 560-570. |
[120] | Mohamed S. El Naschie: From fusion algebra to cold fusion or from pure reason to pragmatism. Open Journal of Philosophy, 2015, 5(6), in press. |
[121] | Mohamed S. El Naschie: Casimir-dark energy nano reactor design proposal based on fractals. International Journal of Innovation is Science and Mathematics, 3(4), 2015, pp. 187-194. |
[122] | R. Thom: Structural stability and Morphogenesis. W.A. Benjamin Inc., London, 1975. |
[123] | M. S. El Naschie: The VAK of vacuum fluctuation, spontaneous self organization and complexity theory interpretation of high energy particle physics and the mass spectrum. Chaos, Solitons & Fractals, 18(2), 2003, pp. 401-420. |
[124] | M. S. El Naschie: VAK, vacuum fluctuation and the mass spectrum of high energy physics. Chaos, Solitons & Fractals, 30(3), 2003, pp. 579-605. |
[125] | M. S. El Naschie: Stress, Stability and Chaos in Structural Engineering, An Energy Approach. McGraw Hill, London, (1991). |
[126] | J. M. T. Thompson and G. Hunt: A General Theory of Elastic Stability. J. Wiley, London, 1973. |
[127] | M. S. El Naschie: A Casimir dark energy nano reactor design – Phase one. Natural Science, 7, 2015, pp. 287-298. |
[128] | M. S. El Naschie: Cosserat-Cartan and de Sitter-Witten spacetime setting for dark energy. Quantum Matter, 5(1), 2016, pp. 1-4. |
[129] | M.S. El Naschie: The Cantorian monadic plasma behind the zero point vacuum spacetime energy. American Journal of Nano Research & Application. 3, 2015, pp. 66-70. |
[130] | M. S. El Naschie: A nonperturbative quantum relativity theory leading to a Casimir-dark energy nanotech reactor proposal. Open Journal of Applied Science, 5(7), 2015, pp. 313. |
[131] | Mae-Wan Ho, M. S. El Naschie and MW Giuseppe Vitello: Is spacetime fractal and quantum coherent in the golden mean? Global Journal of Science Frontier Research, 15(1), 2015, pp. 61-80. |
[132] | M. S. El Naschie: von Neumann geometry and E-infinity quantum spacetime. Chaos, Solitons & Fractals, 9(12), 1998, pp. 2023-2030. |
[133] | Clara Moskowitz: Stephen Hawking hasn’t solved the black hole paradox just yet. Scientific American, August 27, 2015. |
[134] | Rachael Feltman: Stephen Hawking believes he’s solved a huge mystery about black holes. The Washington Post, August 25, 2015. |
[135] | Paul Rincon: Hawking: Black holes store information. BBC News, Science & Environment, 26 August, 2015. |
[136] | L. Susskind and J. Lindesay: Black Holes, Information and the String Theory Revolution. World Scientific, Singapore, 2005. |
[137] | L. susskind: The Black Hole Wave. Back Bay Books New York, USA, 2008. |
[138] | M. S. El Naschie: Fractal black holes and information. Chaos, Solitons & Fractals, 29(1), 2006, pp. 23-35. |
[139] | G. ‘tHooft: On the quantum structure of a black hole. Nuclear Physics B 256, 1985, pp. 727-745. |
[140] | Mohamed S. El Naschie: The measure concentration of convex geometry in a quasi Banach spacetime behind the supposedly missing dark energy of the cosmos. American Journal of Astronomy & Astrophysics, 2014, 2(6), pp. 72-77. |
[141] | Louis H. Kauffman: Knot Logic. In ‘Knots and Applications’, Editor H. Kauffman. World Scientific, Singapore, 1995, pp. 1-100. |
[142] | G. ‘tHooft: G. ‘tHooft asks a question on Research Gate, Questions and Answers, 29 Sept. 2015. Answered by Mohamed S. El Naschie, 29 Sept. 2015. https://www.researchgate.net/post/In_GR_can_we_always_choose_the_local_speed_of_light_to_be_everywhere_smaller_that_the_coordinate_speed_of_light_Can_this_be_used_in_a_theory. |
APA Style
Mohamed S. El Naschie. (2015). A Complementarity Resolution of the Black Hole Information Paradox. American Journal of Astronomy and Astrophysics, 3(5), 77-86. https://doi.org/10.11648/j.ajaa.20150305.11
ACS Style
Mohamed S. El Naschie. A Complementarity Resolution of the Black Hole Information Paradox. Am. J. Astron. Astrophys. 2015, 3(5), 77-86. doi: 10.11648/j.ajaa.20150305.11
AMA Style
Mohamed S. El Naschie. A Complementarity Resolution of the Black Hole Information Paradox. Am J Astron Astrophys. 2015;3(5):77-86. doi: 10.11648/j.ajaa.20150305.11
@article{10.11648/j.ajaa.20150305.11, author = {Mohamed S. El Naschie}, title = {A Complementarity Resolution of the Black Hole Information Paradox}, journal = {American Journal of Astronomy and Astrophysics}, volume = {3}, number = {5}, pages = {77-86}, doi = {10.11648/j.ajaa.20150305.11}, url = {https://doi.org/10.11648/j.ajaa.20150305.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajaa.20150305.11}, abstract = {The E-infinity theory particle-wave duality used to compute the density of ordinary and dark energy of the cosmos is extended to meet the black hole complementarity of Susskind and ‘tHooft. A black hole is essentially a relativistic as well as a quantum object. Therefore the information paradox of black holes is a consequence of the clash between these two most fundamental theories of modern physics. It is logical to conclude that a resolution of the problem requires some form of a quantum gravity theory. The present work proposes such a resolution using set theory and pointless spacetime geometry coupled to the afore mentioned extension and the inbuilt self referential character of Cantorian fractal sets.}, year = {2015} }
TY - JOUR T1 - A Complementarity Resolution of the Black Hole Information Paradox AU - Mohamed S. El Naschie Y1 - 2015/10/20 PY - 2015 N1 - https://doi.org/10.11648/j.ajaa.20150305.11 DO - 10.11648/j.ajaa.20150305.11 T2 - American Journal of Astronomy and Astrophysics JF - American Journal of Astronomy and Astrophysics JO - American Journal of Astronomy and Astrophysics SP - 77 EP - 86 PB - Science Publishing Group SN - 2376-4686 UR - https://doi.org/10.11648/j.ajaa.20150305.11 AB - The E-infinity theory particle-wave duality used to compute the density of ordinary and dark energy of the cosmos is extended to meet the black hole complementarity of Susskind and ‘tHooft. A black hole is essentially a relativistic as well as a quantum object. Therefore the information paradox of black holes is a consequence of the clash between these two most fundamental theories of modern physics. It is logical to conclude that a resolution of the problem requires some form of a quantum gravity theory. The present work proposes such a resolution using set theory and pointless spacetime geometry coupled to the afore mentioned extension and the inbuilt self referential character of Cantorian fractal sets. VL - 3 IS - 5 ER -